Skip to content

Added support for specifying custom models under all existing presets. #163

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 10 additions & 3 deletions all/presets/atari/a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,10 @@ def a2c(
# Batch settings
n_envs=16,
n_steps=5,
# Model construction
feature_model_constructor=nature_features,
value_model_constructor=nature_value_head,
policy_model_constructor=nature_policy_head
):
"""
A2C Atari preset.
Expand All @@ -39,14 +43,17 @@ def a2c(
value_loss_scaling (float): Coefficient for the value function loss.
n_envs (int): Number of parallel environments.
n_steps (int): Length of each rollout.
feature_model_constructor (function): The function used to construct the neural feature model.
value_model_constructor (function): The function used to construct the neural value model.
policy_model_constructor (function): The function used to construct the neural policy model.
"""
def _a2c(envs, writer=DummyWriter()):
env = envs[0]
final_anneal_step = last_frame / (n_steps * n_envs * 4)

value_model = nature_value_head().to(device)
policy_model = nature_policy_head(env).to(device)
feature_model = nature_features().to(device)
value_model = value_model_constructor().to(device)
policy_model = policy_model_constructor(env).to(device)
feature_model = feature_model_constructor().to(device)

feature_optimizer = Adam(feature_model.parameters(), lr=lr, eps=eps)
value_optimizer = Adam(value_model.parameters(), lr=lr, eps=eps)
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/c51.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,8 @@ def c51(
atoms=51,
v_min=-10,
v_max=10,
# Model construction
model_constructor=nature_c51
):
"""
C51 Atari preset.
Expand All @@ -53,13 +55,14 @@ def c51(
the distributional value function.
v_min (int): The expected return corresponding to the smallest atom.
v_max (int): The expected return correspodning to the larget atom.
model_constructor (function): The function used to construct the neural model.
"""
def _c51(env, writer=DummyWriter()):
action_repeat = 4
last_timestep = last_frame / action_repeat
last_update = (last_timestep - replay_start_size) / update_frequency

model = nature_c51(env, atoms=atoms).to(device)
model = model_constructor(env, atoms=atoms).to(device)
optimizer = Adam(
model.parameters(),
lr=lr,
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/ddqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,8 @@ def ddqn(
# Prioritized replay settings
alpha=0.5,
beta=0.5,
# Model construction
model_constructor=nature_ddqn
):
"""
Dueling Double DQN with Prioritized Experience Replay (PER).
Expand All @@ -55,14 +57,15 @@ def ddqn(
(0 = no prioritization, 1 = full prioritization)
beta (float): The strength of the importance sampling correction for prioritized experience replay.
(0 = no correction, 1 = full correction)
model_constructor (function): The function used to construct the neural model.
"""
def _ddqn(env, writer=DummyWriter()):
action_repeat = 4
last_timestep = last_frame / action_repeat
last_update = (last_timestep - replay_start_size) / update_frequency
final_exploration_step = final_exploration_frame / action_repeat

model = nature_ddqn(env).to(device)
model = model_constructor(env).to(device)
optimizer = Adam(
model.parameters(),
lr=lr,
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,8 @@ def dqn(
initial_exploration=1.,
final_exploration=0.01,
final_exploration_frame=4000000,
# Model construction
model_constructor=nature_dqn
):
"""
DQN Atari preset.
Expand All @@ -49,14 +51,15 @@ def dqn(
decayed until final_exploration_frame.
final_exploration (int): Final probability of choosing a random action.
final_exploration_frame (int): The frame where the exploration decay stops.
model_constructor (function): The function used to construct the neural model.
"""
def _dqn(env, writer=DummyWriter()):
action_repeat = 4
last_timestep = last_frame / action_repeat
last_update = (last_timestep - replay_start_size) / update_frequency
final_exploration_step = final_exploration_frame / action_repeat

model = nature_dqn(env).to(device)
model = model_constructor(env).to(device)

optimizer = Adam(
model.parameters(),
Expand Down
13 changes: 10 additions & 3 deletions all/presets/atari/ppo.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,6 +30,10 @@ def ppo(
n_steps=128,
# GAE settings
lam=0.95,
# Model construction
feature_model_constructor=nature_features,
value_model_constructor=nature_value_head,
policy_model_constructor=nature_policy_head
):
"""
PPO Atari preset.
Expand All @@ -51,6 +55,9 @@ def ppo(
n_envs (int): Number of parallel actors.
n_steps (int): Length of each rollout.
lam (float): The Generalized Advantage Estimate (GAE) decay parameter.
feature_model_constructor (function): The function used to construct the neural feature model.
value_model_constructor (function): The function used to construct the neural value model.
policy_model_constructor (function): The function used to construct the neural policy model.
"""
def _ppo(envs, writer=DummyWriter()):
env = envs[0]
Expand All @@ -60,9 +67,9 @@ def _ppo(envs, writer=DummyWriter()):
# with n_envs and 4 frames per step
final_anneal_step = last_frame * epochs * minibatches / (n_steps * n_envs * 4)

value_model = nature_value_head().to(device)
policy_model = nature_policy_head(env).to(device)
feature_model = nature_features().to(device)
value_model = value_model_constructor().to(device)
policy_model = policy_model_constructor(env).to(device)
feature_model = feature_model_constructor().to(device)

feature_optimizer = Adam(
feature_model.parameters(), lr=lr, eps=eps
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/rainbow.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,8 @@ def rainbow(
v_max=10,
# Noisy Nets
sigma=0.5,
# Model construction
model_constructor=nature_rainbow
):
"""
Rainbow Atari Preset.
Expand Down Expand Up @@ -66,13 +68,14 @@ def rainbow(
v_min (int): The expected return corresponding to the smallest atom.
v_max (int): The expected return correspodning to the larget atom.
sigma (float): Initial noisy network noise.
model_constructor (function): The function used to construct the neural model.
"""
def _rainbow(env, writer=DummyWriter()):
action_repeat = 4
last_timestep = last_frame / action_repeat
last_update = (last_timestep - replay_start_size) / update_frequency

model = nature_rainbow(env, atoms=atoms, sigma=sigma).to(device)
model = model_constructor(env, atoms=atoms, sigma=sigma).to(device)
optimizer = Adam(model.parameters(), lr=lr, eps=eps)
q = QDist(
model,
Expand Down
13 changes: 10 additions & 3 deletions all/presets/atari/vac.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,10 @@ def vac(
value_loss_scaling=0.25,
# Parallel actors
n_envs=16,
# Model construction
feature_model_constructor=nature_features,
value_model_constructor=nature_value_head,
policy_model_constructor=nature_policy_head
):
"""
Vanilla Actor-Critic Atari preset.
Expand All @@ -35,11 +39,14 @@ def vac(
Set to 0 to disable.
value_loss_scaling (float): Coefficient for the value function loss.
n_envs (int): Number of parallel environments.
feature_model_constructor (function): The function used to construct the neural feature model.
value_model_constructor (function): The function used to construct the neural value model.
policy_model_constructor (function): The function used to construct the neural policy model.
"""
def _vac(envs, writer=DummyWriter()):
value_model = nature_value_head().to(device)
policy_model = nature_policy_head(envs[0]).to(device)
feature_model = nature_features().to(device)
value_model = value_model_constructor().to(device)
policy_model = policy_model_constructor(envs[0]).to(device)
feature_model = feature_model_constructor().to(device)

value_optimizer = Adam(value_model.parameters(), lr=lr_v, eps=eps)
policy_optimizer = Adam(policy_model.parameters(), lr=lr_pi, eps=eps)
Expand Down
13 changes: 10 additions & 3 deletions all/presets/atari/vpg.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,10 @@ def vpg(
clip_grad=0.5,
value_loss_scaling=0.25,
min_batch_size=1000,
# Model construction
feature_model_constructor=nature_features,
value_model_constructor=nature_value_head,
policy_model_constructor=nature_policy_head
):
"""
Vanilla Policy Gradient Atari preset.
Expand All @@ -35,13 +39,16 @@ def vpg(
value_loss_scaling (float): Coefficient for the value function loss.
min_batch_size (int): Continue running complete episodes until at least this many
states have been seen since the last update.
feature_model_constructor (function): The function used to construct the neural feature model.
value_model_constructor (function): The function used to construct the neural value model.
policy_model_constructor (function): The function used to construct the neural policy model.
"""
final_anneal_step = last_frame / (min_batch_size * 4)

def _vpg_atari(env, writer=DummyWriter()):
value_model = nature_value_head().to(device)
policy_model = nature_policy_head(env).to(device)
feature_model = nature_features().to(device)
value_model = value_model_constructor().to(device)
policy_model = policy_model_constructor(env).to(device)
feature_model = feature_model_constructor().to(device)

feature_optimizer = Adam(feature_model.parameters(), lr=lr, eps=eps)
value_optimizer = Adam(value_model.parameters(), lr=lr, eps=eps)
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/vqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ def vqn(
final_exploration_frame=1000000,
# Parallel actors
n_envs=64,
# Model construction
model_constructor=nature_ddqn
):
"""
Vanilla Q-Network Atari preset.
Expand All @@ -34,13 +36,14 @@ def vqn(
final_exploration (int): Final probability of choosing a random action.
final_exploration_frame (int): The frame where the exploration decay stops.
n_envs (int): Number of parallel environments.
model_constructor (function): The function used to construct the neural model.
"""
def _vqn(envs, writer=DummyWriter()):
action_repeat = 4
final_exploration_timestep = final_exploration_frame / action_repeat

env = envs[0]
model = nature_ddqn(env).to(device)
model = model_constructor(env).to(device)
optimizer = Adam(model.parameters(), lr=lr, eps=eps)
q = QNetwork(
model,
Expand Down
5 changes: 4 additions & 1 deletion all/presets/atari/vsarsa.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@ def vsarsa(
initial_exploration=1.,
# Parallel actors
n_envs=64,
# Model construction
model_constructor=nature_ddqn
):
"""
Vanilla SARSA Atari preset.
Expand All @@ -34,13 +36,14 @@ def vsarsa(
final_exploration (int): Final probability of choosing a random action.
final_exploration_frame (int): The frame where the exploration decay stops.
n_envs (int): Number of parallel environments.
model_constructor (function): The function used to construct the neural model.
"""
def _vsarsa(envs, writer=DummyWriter()):
action_repeat = 4
final_exploration_timestep = final_exploration_frame / action_repeat

env = envs[0]
model = nature_ddqn(env).to(device)
model = model_constructor(env).to(device)
optimizer = Adam(model.parameters(), lr=lr, eps=eps)
q = QNetwork(
model,
Expand Down
13 changes: 10 additions & 3 deletions all/presets/classic_control/a2c.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,10 @@ def a2c(
# Batch settings
n_envs=4,
n_steps=32,
# Model construction
feature_model_constructor=fc_relu_features,
value_model_constructor=fc_value_head,
policy_model_constructor=fc_policy_head
):
"""
A2C classic control preset.
Expand All @@ -30,12 +34,15 @@ def a2c(
entropy_loss_scaling (float): Coefficient for the entropy term in the total loss.
n_envs (int): Number of parallel environments.
n_steps (int): Length of each rollout.
feature_model_constructor (function): The function used to construct the neural feature model.
value_model_constructor (function): The function used to construct the neural value model.
policy_model_constructor (function): The function used to construct the neural policy model.
"""
def _a2c(envs, writer=DummyWriter()):
env = envs[0]
feature_model = fc_relu_features(env).to(device)
value_model = fc_value_head().to(device)
policy_model = fc_policy_head(env).to(device)
feature_model = feature_model_constructor(env).to(device)
value_model = value_model_constructor().to(device)
policy_model = policy_model_constructor(env).to(device)

feature_optimizer = Adam(feature_model.parameters(), lr=lr)
value_optimizer = Adam(value_model.parameters(), lr=lr)
Expand Down
7 changes: 5 additions & 2 deletions all/presets/classic_control/c51.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,9 @@ def c51(
# Distributional RL
atoms=101,
v_min=-100,
v_max=100
v_max=100,
# Model construction
model_constructor=fc_relu_dist_q
):
"""
C51 classic control preset.
Expand All @@ -47,9 +49,10 @@ def c51(
the distributional value function.
v_min (int): The expected return corresponding to the smallest atom.
v_max (int): The expected return correspodning to the larget atom.
model_constructor (function): The function used to construct the neural model.
"""
def _c51(env, writer=DummyWriter()):
model = fc_relu_dist_q(env, atoms=atoms).to(device)
model = model_constructor(env, atoms=atoms).to(device)
optimizer = Adam(model.parameters(), lr=lr)
q = QDist(
model,
Expand Down
5 changes: 4 additions & 1 deletion all/presets/classic_control/ddqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,8 @@ def ddqn(
# Prioritized replay settings
alpha=0.2,
beta=0.6,
# Model construction
model_constructor=dueling_fc_relu_q
):
"""
Dueling Double DQN with Prioritized Experience Replay (PER).
Expand All @@ -50,9 +52,10 @@ def ddqn(
(0 = no prioritization, 1 = full prioritization)
beta (float): The strength of the importance sampling correction for prioritized experience replay.
(0 = no correction, 1 = full correction)
model_constructor (function): The function used to construct the neural model.
"""
def _ddqn(env, writer=DummyWriter()):
model = dueling_fc_relu_q(env).to(device)
model = model_constructor(env).to(device)
optimizer = Adam(model.parameters(), lr=lr)
q = QNetwork(
model,
Expand Down
5 changes: 4 additions & 1 deletion all/presets/classic_control/dqn.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,8 @@ def dqn(
initial_exploration=1.,
final_exploration=0.,
final_exploration_frame=10000,
# Model construction
model_constructor=fc_relu_q
):
"""
DQN classic control preset.
Expand All @@ -42,9 +44,10 @@ def dqn(
decayed until final_exploration_frame.
final_exploration (int): Final probability of choosing a random action.
final_exploration_frame (int): The frame where the exploration decay stops.
model_constructor (function): The function used to construct the neural model.
"""
def _dqn(env, writer=DummyWriter()):
model = fc_relu_q(env).to(device)
model = model_constructor(env).to(device)
optimizer = Adam(model.parameters(), lr=lr)
q = QNetwork(
model,
Expand Down
Loading