A log analyzer in a Learning Management System (LMS) environment is a tool designed to process and interpret log data generated by the LMS. Its main purposes are:
- Monitoring Student Activity: Tracks student interactions with the LMS.
- Identifying Patterns and Trends: Detects patterns that indicate engagement or potential cheating.
- Performance Evaluation: Assesses the effectiveness of learning materials and teaching methods.
- Ensuring Security and Integrity: Monitors for suspicious activities.
- Data Collection: Gathers log data in real-time from various LMS components.
- Data Preprocessing: Converts raw log data into a structured, standardized format.
- Analysis and Visualization.
- Descriptive analytics for summaries and statistics.
- Behavioral analysis to identify student behavior patterns.
- Anomaly detection for unusual patterns indicating issues.
We have integrated Firebase Authentication into this project to provide a more seamless and secure user experience. Firebase Auth allows users to:
- Sign up: Create a new account with a strong email and password.
- Log in: Log in to an existing account using various authentication methods.
- Log out: Log out of their account at any time.
- Forgot Password: Reset the password if forgotten.
No | Image | Url |
---|---|---|
1 | ![]() |
/login |
2 | ![]() |
/dashboard |
3 | ![]() |
/dashboard/ |
4 | ![]() |
/dashboard/findings |
5 | ![]() |
/dashboard/alerts |
6 | ![]() |
/dashboard/alerts |
git clone https://github.com/yogiex/vue-log-analyzer
cd vue-log-analyzer
nvm use 16
npm install
npm run dev
npm run dev only for development
- Real time
- Change
- System Reporting into file
- Integrate with flask backend
- Authentification login with firebase
- Backup Data
create table backup_attempt (
id int auto_increment,
attempt_id int,
id_peserta int,
firstname varchar(99),
lastname varchar(250),
course_name varchar(250),
quiz_name varchar(250),
unique_id int,
layout longtext,
timestart bigint(10),
timefinish bigint(10),
score decimal(10,5),
primary key(id)
);
CREATE TABLE peserta_history (
id SERIAL PRIMARY KEY, -- auto-incrementing primary key
firstname VARCHAR(255) NOT NULL,
lastname VARCHAR(255) NOT NULL,
userid VARCHAR(255) NOT NULL,
timedate TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
timestart TIME NULL DEFAULT NULL,
timefinish TIME NULL DEFAULT NULL,
timetaken TIME NULL DEFAULT NULL,
score INT NOT NULL,
_session VARCHAR(255) NOT NULL,
_status INT NOT NULL,
shift VARCHAR(255) NOT NULL,
CONSTRAINT unique_timestamps UNIQUE (timedate)
);
CREATE TABLE case_history (
cases longtext NOT NULL
);
CREATE TABLE daftar_proktor (
chatid int NOT NULL
);
Setelah membuat db tersebut, langsung jalankan app.py
Copyright (c) 2016-present Vuetify, LLC