Skip to content

An fully autonomous agent that accesses the browser and performs tasks.

License

Notifications You must be signed in to change notification settings

wchisasa/rabbit

Repository files navigation

🐇 Rabbit

Watch Demo

Rabbit is a modular, browser-controlling autonomous agent framework designed for intelligent web-based task execution. Leveraging LLMs and custom tools, Rabbit enables fully autonomous workflows such as research tasks, information extraction, and browser automation across complex multi-step processes.


🚀 Features

  • 🔁 Agent loop execution (agent_task_loop.py)
  • 🌐 Headless browser control with custom tools
  • 🧠 LLM integration with memory + planning system
  • 🔧 Extensible SDK (rabbit_sdk/) with modular components
  • 🧪 Unit and workflow testing support
  • 📊 Example workflows using real-world browser tasks

📼 Demo

Watch Demo


📁 Project Structure

Rabbit/
├── agent_task_loop.py # Main agent loop runner
├── requirements.txt # Python dependencies
├── setup.py # Installation setup
├── test_agent.py # Agent test suite
├── rabbit_sdk/ # Core SDK for Rabbit agent
│   ├── __init__.py
│   ├── agent.py # RabbitAgent class definition
│   ├── browser_controller.py # Controls headless browser actions
│   ├── config.py # Environment + configuration loader
│   ├── llm_manager.py # LLM query & response handling
│   ├── memory_manager.py # Agent memory management
│   ├── planner.py # Task planning module
│   ├── tools/
│   │   ├── __init__.py
│   │   ├── browser_tools.py # Browser-specific tools
│   │   └── utility_tools.py # General utilities for agents
│   └── utils.py # Helper functions
└── examples/
    ├── __init__.py
    ├── simple_browser_task.py # Basic sentiment analysis example
    └── complex_workflow.py # Advanced multi-step automation example

🧪 Example: Sentiment Analysis of AI Safety

cd Rabbit/examples
python3 simple_browser_task.py
  1. Open multiple URLs about AI and safety
  2. Scrape relevant content
  3. Run sentiment analysis
  4. Summarize the key findings

🧪 Example: Comprehensive Crypto Analysis

cd Rabbit/examples
python3 complex_workflow.py
  1. Open multiple URLs about crypto assets
  2. Scrape relevant content
  3. Run sentiment analysis
  4. Summarize the key findings
  5. Generate trading insights

⚙️ Setup & Installation

1. Clone the repository

git clone https://github.com/wchisasa/rabbit.git
cd rabbit

2. Install dependencies

pip install -r requirements.txt

3. Set environment variables

Create a .env file in the root with your API keys:

GEMINI_API_KEY=your_gemini_api_key_here

🧠 Powered By

  • Google Gemini (or other LLMs)
  • Playwright / Puppeteer (for browser automation)
  • Open-source planning, memory, and tooling layers

🛠 Development & Testing

python test_agent.py

📌 TODO

  • Add support for OpenAI + Claude
  • Extend toolset for data transformation tasks
  • Integrate with vector DB for persistent memory
  • Web UI for visualizing agent reasoning

📄 License

MIT License. See LICENSE for details.

About

An fully autonomous agent that accesses the browser and performs tasks.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages