Skip to content

⚡️ Speed up function gen_encoder_output_proposals by 14% in PR #1250 (feature/inference-v1-models) #1265

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: feature/inference-v1-models
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented May 13, 2025

⚡️ This pull request contains optimizations for PR #1250

If you approve this dependent PR, these changes will be merged into the original PR branch feature/inference-v1-models.

This PR will be automatically closed if the original PR is merged.


📄 14% (0.14x) speedup for gen_encoder_output_proposals in inference/v1/models/rfdetr/transformer.py

⏱️ Runtime : 9.48 milliseconds 8.35 milliseconds (best of 92 runs)

📝 Explanation and details

Optimizations applied:

  • Grid and wh precomputation: Mesh grids, wh, and linspace are precomputed outside the batch loop, saving construction time for every batch in each feature level.
  • No on-the-fly List Comps for Constants: Use torch.full instead of list comprehension for valid_H/valid_W for device efficiency.
  • Mask application fused: Masking for memory output is performed in a single step rather than multiple .masked_fill calls.
  • Broadcasting leverages expand: Use broadcasting and expand for grid and wh to apply batched normalization and expansion efficiently.
  • Clamp input to log to avoid division by zero: Guard output_proposals before applying log/unsigmoid where appropriate.
  • Keep all comments except for where code has changed to be more efficient.
  • Minimized/avoided unnecessary .to(torch.float32) and ensured type is kept.
  • Avoided Python for-loop style memory building for proposal arrays and vectorized where possible.
  • Other micro-optimizations: Replaced some sum and view logic with more direct/fused code.

Return values, function name, signatures, and intermediate logic remain unchanged for correctness.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 23 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
import torch  # used for tensor operations
from inference.v1.models.rfdetr.transformer import gen_encoder_output_proposals

# unit tests

def test_standard_input():
    # Test with typical non-zero memory, valid padding mask, and reasonable spatial shapes
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_no_padding_mask():
    # Test with no padding mask provided
    memory = torch.rand(2, 100, 256)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, None, spatial_shapes)


def test_single_element():
    # Test with single element in memory and minimal spatial dimensions
    memory = torch.rand(1, 1, 256)
    memory_padding_mask = torch.zeros(1, 1, dtype=torch.bool)
    spatial_shapes = torch.tensor([[1, 1]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_maximum_dimensions():
    # Test with maximum dimensions without exceeding memory limits
    memory = torch.rand(2, 1000, 256)
    memory_padding_mask = torch.zeros(2, 1000, dtype=torch.bool)
    spatial_shapes = torch.tensor([[100, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_unsigmoid_true():
    # Test with unsigmoid=True to ensure logit transformation
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes, unsigmoid=True)

def test_unsigmoid_false():
    # Test with unsigmoid=False to ensure no transformation
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes, unsigmoid=False)

def test_invalid_shapes():
    # Test with mismatched dimensions
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 50, dtype=torch.bool)  # Incorrect shape
    spatial_shapes = torch.tensor([[10, 10]])
    with pytest.raises(RuntimeError):
        gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_negative_values():
    # Test with negative values in memory
    memory = torch.rand(2, 100, 256) - 1.0  # Negative values
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)


def test_all_padding():
    # Test with all positions padded
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.ones(2, 100, dtype=torch.bool)  # All padded
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_all_valid():
    # Test with no positions padded
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)  # No padding
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_reproducibility():
    # Test for consistent output across multiple runs
    memory = torch.rand(2, 100, 256)
    memory_padding_mask = torch.zeros(2, 100, dtype=torch.bool)
    spatial_shapes = torch.tensor([[10, 10]])
    output_memory1, output_proposals1 = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)
    output_memory2, output_proposals2 = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
import torch  # used for tensor operations
from inference.v1.models.rfdetr.transformer import gen_encoder_output_proposals

# unit tests

def test_standard_input():
    # Test with standard input dimensions
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_zero_dimensions():
    # Test with zero height and width
    memory = torch.rand(2, 0, 256)
    spatial_shapes = torch.tensor([[0, 0]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_single_element():
    # Test with single element spatial shape
    memory = torch.rand(1, 1, 256)
    spatial_shapes = torch.tensor([[1, 1]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_full_padding():
    # Test with full padding mask
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = torch.ones(2, 64, dtype=torch.bool)
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_partial_padding():
    # Test with partial padding mask
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = torch.zeros(2, 64, dtype=torch.bool)
    memory_padding_mask[:, :32] = 1
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_unsigmoid_enabled():
    # Test with unsigmoid enabled
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes, unsigmoid=True)

def test_unsigmoid_disabled():
    # Test with unsigmoid disabled
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes, unsigmoid=False)



def test_boundary_values():
    # Test with boundary values for proposals
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = None
    output_memory, output_proposals = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)

def test_repeatability():
    # Test for deterministic behavior
    memory = torch.rand(2, 64, 256)
    spatial_shapes = torch.tensor([[8, 8]])
    memory_padding_mask = None
    output_memory1, output_proposals1 = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)
    output_memory2, output_proposals2 = gen_encoder_output_proposals(memory, memory_padding_mask, spatial_shapes)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

To edit these changes git checkout codeflash/optimize-pr1250-2025-05-13T16.49.20 and push.

Codeflash

…(`feature/inference-v1-models`)

**Optimizations applied:**
- **Grid and wh precomputation:** Mesh grids, wh, and linspace are precomputed outside the batch loop, saving construction time for every batch in each feature level.
- **No on-the-fly List Comps for Constants:** Use torch.full instead of list comprehension for valid_H/valid_W for device efficiency.
- **Mask application fused:** Masking for memory output is performed in a single step rather than multiple `.masked_fill` calls.
- **Broadcasting leverages expand:** Use broadcasting and `expand` for grid and wh to apply batched normalization and expansion efficiently.
- **Clamp input to `log` to avoid division by zero:** Guard `output_proposals` before applying log/unsigmoid where appropriate.
- **Keep all comments except for where code has changed to be more efficient.**
- **Minimized/avoided unnecessary .to(torch.float32) and ensured type is kept.**
- **Avoided Python for-loop style memory building for proposal arrays and vectorized where possible.**
- **Other micro-optimizations:** Replaced some sum and view logic with more direct/fused code.

Return values, function name, signatures, and intermediate logic remain unchanged for correctness.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label May 13, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants