Skip to content

Use video logging api in detect_and_track example #8261

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Dec 2, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 13 additions & 4 deletions examples/python/detect_and_track_objects/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ Visualize object detection and segmentation using the [Huggingface's Transformer
</picture>

## Used Rerun types
[`Image`](https://www.rerun.io/docs/reference/types/archetypes/image), [`SegmentationImage`](https://www.rerun.io/docs/reference/types/archetypes/segmentation_image), [`AnnotationContext`](https://www.rerun.io/docs/reference/types/archetypes/annotation_context), [`Boxes2D`](https://www.rerun.io/docs/reference/types/archetypes/boxes2d), [`TextLog`](https://www.rerun.io/docs/reference/types/archetypes/text_log)
[`Image`](https://www.rerun.io/docs/reference/types/archetypes/image), [`AssetVideo`](https://www.rerun.io/docs/reference/types/archetypes/asset_video), [`VideoFrameReference`](https://rerun.io/docs/reference/types/archetypes/video_frame_reference), [`SegmentationImage`](https://www.rerun.io/docs/reference/types/archetypes/segmentation_image), [`AnnotationContext`](https://www.rerun.io/docs/reference/types/archetypes/annotation_context), [`Boxes2D`](https://www.rerun.io/docs/reference/types/archetypes/boxes2d), [`TextLog`](https://www.rerun.io/docs/reference/types/archetypes/text_log)

## Background
In this example, CSRT (Channel and Spatial Reliability Tracker), a tracking API introduced in OpenCV, is employed for object detection and tracking across frames.
Expand All @@ -36,12 +36,21 @@ rr.set_time_sequence("frame", frame_idx)
```

### Video
The input video is logged as a sequence of [`Image`](https://www.rerun.io/docs/reference/types/archetypes/image) to the `image` entity.
The input video is logged as a static [`AssetVideo`](https://www.rerun.io/docs/reference/types/archetypes/asset_video) to the `video` entity.

```python
video_asset = rr.AssetVideo(path=video_path)
frame_timestamps_ns = video_asset.read_frame_timestamps_ns()

rr.log("video", video_asset, static=True)
```

Each frame is processed and the timestamp is logged to the `frame` timeline using a [`VideoFrameReference`](https://www.rerun.io/docs/reference/types/archetypes/video_frame_reference).

```python
rr.log(
"image",
rr.Image(rgb).compress(jpeg_quality=85)
"video",
rr.VideoFrameReference(nanoseconds=frame_timestamps_ns[frame_idx])
)
```

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -205,15 +205,15 @@ def update(self, bgr: cv2.typing.MatLike) -> None:
def log_tracked(self) -> None:
if self.is_tracking:
rr.log(
f"image/tracked/{self.tracking_id}",
f"video/tracked/{self.tracking_id}",
rr.Boxes2D(
array=self.tracked.bbox_xywh,
array_format=rr.Box2DFormat.XYWH,
class_ids=self.tracked.class_id,
),
)
else:
rr.log(f"image/tracked/{self.tracking_id}", rr.Clear(recursive=False)) # TODO(#3381)
rr.log(f"video/tracked/{self.tracking_id}", rr.Clear(recursive=False)) # TODO(#3381)

def update_with_detection(self, detection: Detection, bgr: cv2.typing.MatLike) -> None:
self.num_recent_undetected_frames = 0
Expand Down Expand Up @@ -339,6 +339,11 @@ def track_objects(video_path: str, *, max_frame_count: int | None) -> None:
detector = Detector(coco_categories=coco_categories)
logging.info("Detector initialized.")

video_asset = rr.AssetVideo(path=video_path)
frame_timestamps_ns = video_asset.read_frame_timestamps_ns()

rr.log("video", video_asset, static=True)

logging.info("Loading input video: %s", str(video_path))
cap = cv2.VideoCapture(video_path)
frame_idx = 0
Expand All @@ -358,7 +363,7 @@ def track_objects(video_path: str, *, max_frame_count: int | None) -> None:
break

rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
rr.log("image", rr.Image(rgb).compress(jpeg_quality=85))
rr.log("video", rr.VideoFrameReference(nanoseconds=frame_timestamps_ns[frame_idx]))

if not trackers or frame_idx % 40 == 0:
detections = detector.detect_objects_to_track(rgb=rgb, frame_idx=frame_idx)
Expand Down
Loading