|
| 1 | +# -*- coding: utf-8 -*- |
| 2 | + |
| 3 | +# This code is part of Qiskit. |
| 4 | +# |
| 5 | +# (C) Copyright IBM 2020. |
| 6 | +# |
| 7 | +# This code is licensed under the Apache License, Version 2.0. You may |
| 8 | +# obtain a copy of this license in the LICENSE.txt file in the root directory |
| 9 | +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. |
| 10 | +# |
| 11 | +# Any modifications or derivative works of this code must retain this |
| 12 | +# copyright notice, and modified files need to carry a notice indicating |
| 13 | +# that they have been altered from the originals. |
| 14 | + |
| 15 | +""" |
| 16 | +Convert knapsack parameters instances into Pauli list |
| 17 | +The parameters are a list of values a list of weights and a maximum weight of the knapsack. |
| 18 | +
|
| 19 | +In the Knapsack Problem we are given a list of objects that each has a weight and a value. |
| 20 | +We are also given a maximum weight we can carry. We need to pick a subset of the objects |
| 21 | +so as to maximize the total value without going over the maximum weight. |
| 22 | +
|
| 23 | +If we have the weights w[i], the values v[i] and the maximum weight W_max. |
| 24 | +We express the solution as a binary array x[i] |
| 25 | +where we have a 1 for the items we take in the solution set. |
| 26 | +We need to maximize sum(x[i]*v[i]) while respecting W_max >= sum(x[i]*w[i]) |
| 27 | +
|
| 28 | +""" |
| 29 | + |
| 30 | +import logging |
| 31 | +import math |
| 32 | +import numpy as np |
| 33 | + |
| 34 | +from qiskit.quantum_info import Pauli |
| 35 | +from qiskit.aqua.operators import WeightedPauliOperator |
| 36 | + |
| 37 | + |
| 38 | +logger = logging.getLogger(__name__) |
| 39 | + |
| 40 | + |
| 41 | +def get_operator(values, weights, max_weight): |
| 42 | + """ |
| 43 | + Generate Hamiltonian for the knapsack problem. |
| 44 | +
|
| 45 | + Notes: |
| 46 | + To build the cost function for the Hamiltonian we add a term S |
| 47 | + that will vary with our solution. In order to make it change wit the solution |
| 48 | + we enhance X with a number of additional bits X' = [x_0,..x_{n-1},y_{n}..y_{n+m-1}]. |
| 49 | + The bytes y[i] will be the binary representation of S. |
| 50 | + In this way the optimizer will be able to optimize S as well as X. |
| 51 | +
|
| 52 | + The cost function is |
| 53 | + $$C(X') = M(W_{max} - \\sum_{i=0}^{n-1} x_{i}w_{i} - S)^2 - \\sum_{i}^{n-1} x_{i}v_{i}$$ |
| 54 | + where S = sum(2**j * y[j]), j goes from n to n+log(W_max). |
| 55 | + M is a number large enough to dominate the sum of values. |
| 56 | +
|
| 57 | + Because S can only be positive, when W_max >= sum(x[i]*w[i]) |
| 58 | + the optimizer can find an S (or better the y[j] that compose S) |
| 59 | + so that it will take the first term to 0. |
| 60 | + This way the function is dominated by the sum of values. |
| 61 | + If W_max < sum(x[i]*w[i]) then the first term can never be 0 |
| 62 | + and, multiplied by a large M, will always dominate the function. |
| 63 | +
|
| 64 | + The minimum value of the function will be that where the constraint is respected |
| 65 | + and the sum of values is maximized. |
| 66 | +
|
| 67 | + Args: |
| 68 | + values (list of non-negative integers) : a list of values |
| 69 | + weights (list of non-negative integers) : a list of weights |
| 70 | + max_weight (non negative integer) : the maximum weight the knapsack can carry |
| 71 | +
|
| 72 | + Returns: |
| 73 | + WeightedPauliOperator: operator for the Hamiltonian |
| 74 | + float: a constant shift for the obj function. |
| 75 | +
|
| 76 | + Raises: |
| 77 | + ValueError: values and weights have different lengths |
| 78 | + ValueError: A value or a weight is negative |
| 79 | + ValueError: All values are zero |
| 80 | + ValueError: max_weight is negative |
| 81 | +
|
| 82 | + """ |
| 83 | + if len(values) != len(weights): |
| 84 | + raise ValueError("The values and weights must have the same length") |
| 85 | + |
| 86 | + if any(v < 0 for v in values) or any(w < 0 for w in weights): |
| 87 | + raise ValueError("The values and weights cannot be negative") |
| 88 | + |
| 89 | + if all(v == 0 for v in values): |
| 90 | + raise ValueError("The values cannot all be 0") |
| 91 | + |
| 92 | + if max_weight < 0: |
| 93 | + raise ValueError("max_weight cannot be negative") |
| 94 | + |
| 95 | + y_size = int(math.log(max_weight, 2)) + 1 if max_weight > 0 else 1 |
| 96 | + n = len(values) |
| 97 | + num_values = n + y_size |
| 98 | + pauli_list = [] |
| 99 | + shift = 0 |
| 100 | + |
| 101 | + # pylint: disable=invalid-name |
| 102 | + M = 10 * np.sum(values) |
| 103 | + |
| 104 | + # term for sum(x_i*w_i)**2 |
| 105 | + for i in range(n): |
| 106 | + for j in range(n): |
| 107 | + coefficient = -1 * 0.25 * weights[i] * weights[j] * M |
| 108 | + pauli_op = _get_pauli_op(num_values, [j]) |
| 109 | + pauli_list.append([coefficient, pauli_op]) |
| 110 | + shift -= coefficient |
| 111 | + |
| 112 | + pauli_op = _get_pauli_op(num_values, [i]) |
| 113 | + pauli_list.append([coefficient, pauli_op]) |
| 114 | + shift -= coefficient |
| 115 | + |
| 116 | + coefficient = -1 * coefficient |
| 117 | + pauli_op = _get_pauli_op(num_values, [i, j]) |
| 118 | + pauli_list.append([coefficient, pauli_op]) |
| 119 | + shift -= coefficient |
| 120 | + |
| 121 | + # term for sum(2**j*y_j)**2 |
| 122 | + for i in range(y_size): |
| 123 | + for j in range(y_size): |
| 124 | + coefficient = -1 * 0.25 * (2 ** i) * (2 ** j) * M |
| 125 | + |
| 126 | + pauli_op = _get_pauli_op(num_values, [n + j]) |
| 127 | + pauli_list.append([coefficient, pauli_op]) |
| 128 | + shift -= coefficient |
| 129 | + |
| 130 | + pauli_op = _get_pauli_op(num_values, [n + i]) |
| 131 | + pauli_list.append([coefficient, pauli_op]) |
| 132 | + shift -= coefficient |
| 133 | + |
| 134 | + coefficient = -1 * coefficient |
| 135 | + pauli_op = _get_pauli_op(num_values, [n + i, n + j]) |
| 136 | + pauli_list.append([coefficient, pauli_op]) |
| 137 | + shift -= coefficient |
| 138 | + |
| 139 | + # term for -2*W_max*sum(x_i*w_i) |
| 140 | + for i in range(n): |
| 141 | + coefficient = max_weight * weights[i] * M |
| 142 | + |
| 143 | + pauli_op = _get_pauli_op(num_values, [i]) |
| 144 | + pauli_list.append([coefficient, pauli_op]) |
| 145 | + shift -= coefficient |
| 146 | + |
| 147 | + # term for -2*W_max*sum(2**j*y_j) |
| 148 | + for j in range(y_size): |
| 149 | + coefficient = max_weight * (2 ** j) * M |
| 150 | + |
| 151 | + pauli_op = _get_pauli_op(num_values, [n + j]) |
| 152 | + pauli_list.append([coefficient, pauli_op]) |
| 153 | + shift -= coefficient |
| 154 | + |
| 155 | + for i in range(n): |
| 156 | + for j in range(y_size): |
| 157 | + coefficient = -1 * 0.5 * weights[i] * (2 ** j) * M |
| 158 | + |
| 159 | + pauli_op = _get_pauli_op(num_values, [n + j]) |
| 160 | + pauli_list.append([coefficient, pauli_op]) |
| 161 | + shift -= coefficient |
| 162 | + |
| 163 | + pauli_op = _get_pauli_op(num_values, [i]) |
| 164 | + pauli_list.append([coefficient, pauli_op]) |
| 165 | + shift -= coefficient |
| 166 | + |
| 167 | + coefficient = -1 * coefficient |
| 168 | + pauli_op = _get_pauli_op(num_values, [i, n + j]) |
| 169 | + pauli_list.append([coefficient, pauli_op]) |
| 170 | + shift -= coefficient |
| 171 | + |
| 172 | + # term for sum(x_i*v_i) |
| 173 | + for i in range(n): |
| 174 | + coefficient = 0.5 * values[i] |
| 175 | + |
| 176 | + pauli_op = _get_pauli_op(num_values, [i]) |
| 177 | + pauli_list.append([coefficient, pauli_op]) |
| 178 | + shift -= coefficient |
| 179 | + |
| 180 | + return WeightedPauliOperator(paulis=pauli_list), shift |
| 181 | + |
| 182 | + |
| 183 | +def get_solution(x, values): |
| 184 | + """ |
| 185 | + Get the solution to the knapsack problem |
| 186 | + from the bitstring that represents |
| 187 | + to the ground state of the Hamiltonian |
| 188 | +
|
| 189 | + Args: |
| 190 | + x (numpy.ndarray): the ground state of the Hamiltonian. |
| 191 | + values (numpy.ndarray): the list of values |
| 192 | +
|
| 193 | + Returns: |
| 194 | + numpy.ndarray: a bit string that has a '1' at the indexes |
| 195 | + corresponding to values that have been taken in the knapsack. |
| 196 | + i.e. if the solution has a '1' at index i then |
| 197 | + the value values[i] has been taken in the knapsack |
| 198 | + """ |
| 199 | + return x[:len(values)] |
| 200 | + |
| 201 | + |
| 202 | +def knapsack_value_weight(solution, values, weights): |
| 203 | + """ |
| 204 | + Get the total wight and value of the items taken in the knapsack. |
| 205 | +
|
| 206 | + Args: |
| 207 | + solution (numpy.ndarray) : binary string that represents the solution to the problem. |
| 208 | + values (numpy.ndarray) : the list of values |
| 209 | + weights (numpy.ndarray) : the list of weights |
| 210 | +
|
| 211 | + Returns: |
| 212 | + tuple: the total value and weight of the items in the knapsack |
| 213 | + """ |
| 214 | + value = np.sum(solution * values) |
| 215 | + weight = np.sum(solution * weights) |
| 216 | + return value, weight |
| 217 | + |
| 218 | + |
| 219 | +def _get_pauli_op(num_values, indexes): |
| 220 | + pauli_x = np.zeros(num_values, dtype=np.bool) |
| 221 | + pauli_z = np.zeros(num_values, dtype=np.bool) |
| 222 | + for i in indexes: |
| 223 | + pauli_z[i] = not pauli_z[i] |
| 224 | + |
| 225 | + return Pauli(pauli_z, pauli_x) |
0 commit comments