Skip to content

Change validaiton script to run smoke tests from vision, audio etc.. #1223

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 14, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .github/workflows/validate-nightly-binaries.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@ on:
- .github/workflows/validate-macos-binaries.yml
- .github/workflows/validate-macos-arm64-binaries.yml
- test/smoke_test/*

jobs:
nightly:
uses: ./.github/workflows/validate-binaries.yml
Expand Down
1 change: 1 addition & 0 deletions .github/workflows/validate-windows-binaries.yml
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,7 @@ jobs:
repository: "pytorch/builder"
ref: ${{ inputs.ref || github.ref }}
job-name: ${{ matrix.build_name }}
timeout: 60
script: |
set -ex
export ENV_NAME="conda-env-${{ github.run_id }}"
Expand Down
160 changes: 54 additions & 106 deletions test/smoke_test/smoke_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
import argparse
import torch
import platform
import importlib
import subprocess

gpu_arch_ver = os.getenv("GPU_ARCH_VER")
gpu_arch_type = os.getenv("GPU_ARCH_TYPE")
Expand All @@ -14,6 +16,21 @@
SCRIPT_DIR = Path(__file__).parent
NIGHTLY_ALLOWED_DELTA = 3

MODULES = [
{
"name": "torchvision",
"repo": "https://github.com/pytorch/vision.git",
"smoke_test": "python ./vision/test/smoke_test.py",
"extension": "extension",
},
{
"name": "torchaudio",
"repo": "https://github.com/pytorch/audio.git",
"smoke_test": "python ./audio/test/smoke_test/smoke_test.py --no-ffmpeg",
"extension": "_extension",
},
]

def check_nightly_binaries_date(package: str) -> None:
from datetime import datetime, timedelta
format_dt = '%Y%m%d'
Expand All @@ -27,33 +44,16 @@ def check_nightly_binaries_date(package: str) -> None:
)

if(package == "all"):
import torchaudio
import torchvision
ta_str = torchaudio.__version__
tv_str = torchvision.__version__
date_ta_str = re.findall("dev\d+", torchaudio.__version__)
date_tv_str = re.findall("dev\d+", torchvision.__version__)
date_ta_delta = datetime.now() - datetime.strptime(date_ta_str[0][3:], format_dt)
date_tv_delta = datetime.now() - datetime.strptime(date_tv_str[0][3:], format_dt)

# check that the above three lists are equal and none of them is empty
if date_ta_delta.days > NIGHTLY_ALLOWED_DELTA or date_tv_delta.days > NIGHTLY_ALLOWED_DELTA:
raise RuntimeError(
f"Expected torchaudio, torchvision to be less then {NIGHTLY_ALLOWED_DELTA} days. But they are from {date_ta_str}, {date_tv_str} respectively"
)

def check_cuda_version(version: str, dlibary: str):
version = torch.ops.torchaudio.cuda_version()
if version is not None and torch.version.cuda is not None:
version_str = str(version)
ta_version = f"{version_str[:-3]}.{version_str[-2]}"
t_version = torch.version.cuda.split(".")
t_version = f"{t_version[0]}.{t_version[1]}"
if ta_version != t_version:
raise RuntimeError(
"Detected that PyTorch and {dlibary} were compiled with different CUDA versions. "
f"PyTorch has CUDA version {t_version} whereas {dlibary} has CUDA version {ta_version}. "
)
for module in MODULES:
imported_module = importlib.import_module(module["name"])
module_version = imported_module.__version__
date_m_str = re.findall("dev\d+", module_version)
date_m_delta = datetime.now() - datetime.strptime(date_m_str[0][3:], format_dt)
print(f"Nightly date check for {module['name']} version {module_version}")
if date_m_delta.days > NIGHTLY_ALLOWED_DELTA:
raise RuntimeError(
f"Expected {module['name']} to be less then {NIGHTLY_ALLOWED_DELTA} days. But its {date_m_delta}"
)

def smoke_test_cuda(package: str) -> None:
if not torch.cuda.is_available() and is_cuda_system:
Expand All @@ -69,12 +69,16 @@ def smoke_test_cuda(package: str) -> None:
print(f"cuDNN enabled? {torch.backends.cudnn.enabled}")

if(package == 'all' and is_cuda_system):
import torchaudio
import torchvision
print(f"torchvision cuda: {torch.ops.torchvision._cuda_version()}")
print(f"torchaudio cuda: {torch.ops.torchaudio.cuda_version()}")
check_cuda_version(torch.ops.torchvision._cuda_version(), "TorchVision")
check_cuda_version(torch.ops.torchaudio.cuda_version(), "TorchAudio")
for module in MODULES:
imported_module = importlib.import_module(module["name"])
# TBD for vision move extension module to private so it will
# be _extention.
version = "N/A"
if module["extension"] == "extension":
version = imported_module.extension._check_cuda_version()
else:
version = imported_module._extension._check_cuda_version()
print(f"{module['name']} CUDA: {version}")


def smoke_test_conv2d() -> None:
Expand All @@ -97,67 +101,20 @@ def smoke_test_conv2d() -> None:
out = conv(x)


def smoke_test_torchvision() -> None:
print(
"Is torchvision useable?",
all(
x is not None
for x in [torch.ops.image.decode_png, torch.ops.torchvision.roi_align]
),
)


def smoke_test_torchvision_read_decode() -> None:
from torchvision.io import read_image

img_jpg = read_image(str(SCRIPT_DIR / "assets" / "rgb_pytorch.jpg"))
if img_jpg.ndim != 3 or img_jpg.numel() < 100:
raise RuntimeError(f"Unexpected shape of img_jpg: {img_jpg.shape}")
img_png = read_image(str(SCRIPT_DIR / "assets" / "rgb_pytorch.png"))
if img_png.ndim != 3 or img_png.numel() < 100:
raise RuntimeError(f"Unexpected shape of img_png: {img_png.shape}")


def smoke_test_torchvision_resnet50_classify(device: str = "cpu") -> None:
from torchvision.io import read_image
from torchvision.models import resnet50, ResNet50_Weights

img = read_image(str(SCRIPT_DIR / "assets" / "dog2.jpg")).to(device)

# Step 1: Initialize model with the best available weights
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights).to(device)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
expected_category = "German shepherd"
print(f"{category_name}: {100 * score:.1f}%")
if category_name != expected_category:
raise RuntimeError(
f"Failed ResNet50 classify {category_name} Expected: {expected_category}"
)


def smoke_test_torchaudio() -> None:
import torchaudio
import torchaudio.compliance.kaldi # noqa: F401
import torchaudio.datasets # noqa: F401
import torchaudio.functional # noqa: F401
import torchaudio.models # noqa: F401
import torchaudio.pipelines # noqa: F401
import torchaudio.sox_effects # noqa: F401
import torchaudio.transforms # noqa: F401
import torchaudio.utils # noqa: F401
def smoke_test_modules():
for module in MODULES:
if module["repo"]:
subprocess.check_output(f"git clone --depth 1 {module['repo']}", stderr=subprocess.STDOUT, shell=True)
try:
output = subprocess.check_output(
module["smoke_test"], stderr=subprocess.STDOUT, shell=True,
universal_newlines=True)
except subprocess.CalledProcessError as exc:
raise RuntimeError(
f"Module {module['name']} FAIL: {exc.returncode} Output: {exc.output}"
)
else:
print("Output: \n{}\n".format(output))


def main() -> None:
Expand All @@ -171,25 +128,16 @@ def main() -> None:
)
options = parser.parse_args()
print(f"torch: {torch.__version__}")

smoke_test_cuda(options.package)
smoke_test_conv2d()

if options.package == "all":
smoke_test_modules()

# only makes sense to check nightly package where dates are known
if installation_str.find("nightly") != -1:
check_nightly_binaries_date(options.package)

if options.package == "all":
import torchaudio
import torchvision
print(f"torchvision: {torchvision.__version__}")
print(f"torchaudio: {torchaudio.__version__}")
smoke_test_torchaudio()
smoke_test_torchvision()
smoke_test_torchvision_read_decode()
smoke_test_torchvision_resnet50_classify()
if torch.cuda.is_available():
smoke_test_torchvision_resnet50_classify("cuda")

if __name__ == "__main__":
main()