Skip to content

4 tests fail: TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info' #53

Open
@yurivict

Description

@yurivict
========================================================================================= FAILURES ==========================================================================================
__________________________________________________________________________________ solve_ls.test_basic_ls ___________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_basic_ls>

    def test_basic_ls(self):
        np.random.seed(2)
        n = 5
        A = random_psd(n, n)
        B = random_psd(n, n)
        C = - random_psd(n, n)
        M = spa.bmat([[A, B.T], [B, C]], format='csc')
        b = np.random.randn(n + n)
    
        #  import ipdb; ipdb.set_trace()
        m = qdldl.Solver(M)
    
        x_qdldl = m.solve(b)
>       x_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:32: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8ba19310>
mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>'
        with 100 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
__________________________________________________________________________________ solve_ls.test_scalar_ls __________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_scalar_ls>

    def test_scalar_ls(self):
        M = spa.csc_matrix(np.random.randn(1, 1))
        b = np.random.randn(1)
    
        F = qdldl.Solver(M)
        x_qdldl = F.solve(b)
>       x_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:43: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8bd48290>
mtx = <1x1 sparse matrix of type '<class 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
___________________________________________________________________________________ solve_ls.test_thread ____________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_thread>

    def test_thread(self):
    
        n = 100
        N = 400
    
        def get_random_ls(n):
            A = random_psd(n, n)
            B = random_psd(n, n)
            C = - random_psd(n, n)
            M = spa.bmat([[A, B.T], [B, C]], format='csc')
            b = np.random.randn(n + n)
            return M, b
    
        ls = [get_random_ls(n) for _ in range(N)]
    
        # Solve in loop with scipy
        res_scipy = []
        for (M, b) in ls:
>           res_scipy.append(sla.spsolve(M, b))

tests/test_solve_ls.py:66: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8c90>
mtx = <200x200 sparse matrix of type '<class 'numpy.float64'>'
        with 40000 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
___________________________________________________________________________________ solve_ls.test_update ____________________________________________________________________________________

self = <tests.test_solve_ls.solve_ls testMethod=test_update>

    def test_update(self):
        n = 5
        A = random_psd(n, n)
        B = random_psd(n, n)
        C = - random_psd(n, n)
        M = spa.bmat([[A, B.T], [B, C]], format='csc')
    
        b = np.random.randn(n + n)
    
        F = qdldl.Solver(M)
    
>       x_first_scipy = sla.spsolve(M, b)

tests/test_solve_ls.py:106: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
/usr/local/lib/python3.11/site-packages/scipy/sparse/linalg/_dsolve/linsolve.py:259: in spsolve
    x = umf.linsolve(umfpack.UMFPACK_A, A, b_vec,
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:770: in linsolve
    self.numeric(mtx)
/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:555: in numeric
    self.symbolic(mtx)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

self = <scikits.umfpack.umfpack.UmfpackContext object at 0x112b8c4d8890>
mtx = <10x10 sparse matrix of type '<class 'numpy.float64'>'
        with 100 stored elements in Compressed Sparse Column format>

    def symbolic(self, mtx):
        """
        Perform symbolic object (symbolic LU decomposition) computation for a given
        sparsity pattern.
        """
        self.free_symbolic()
    
        indx = self._getIndx(mtx)
    
        if not assumeSortedIndices:
            # row/column indices cannot be assumed to be sorted
            mtx.sort_indices()
    
        if self.isReal:
            status, self._symbolic\
>                   = self.funs.symbolic(mtx.shape[0], mtx.shape[1],
                                          mtx.indptr,
                                          indx,
                                          mtx.data,
                                          self.control, self.info)
E           TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'

/usr/local/lib/python3.11/site-packages/scikits/umfpack/umfpack.py:522: TypeError
================================================================================== short test summary info ==================================================================================
FAILED tests/test_solve_ls.py::solve_ls::test_basic_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_scalar_ls - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_thread - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
FAILED tests/test_solve_ls.py::solve_ls::test_update - TypeError: umfpack_dl_symbolic() missing 1 required positional argument: 'Info'
=============================================================================== 4 failed, 5 passed in 12.28s ================================================================================

Version: 0.1.7.post5
Python-3.11

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions