Skip to content

Creating pull request for 10.21105.joss.07312 #6128

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 3 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
267 changes: 267 additions & 0 deletions joss.07312/10.21105.joss.07312.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,267 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20241113085534-43b698c7452c5fe8677d136f111651ac7fb84b50</doi_batch_id>
<timestamp>20241113085534</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>11</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>103</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>PANINIpy: Package of Algorithms for Nonparametric
Inference with Networks In Python</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Alec</given_name>
<surname>Kirkley</surname>
<affiliations>
<institution><institution_name>Institute of Data Science, University of Hong Kong, Hong Kong</institution_name></institution>
<institution><institution_name>Department of Urban Planning and Design, University of Hong Kong, Hong Kong</institution_name></institution>
<institution><institution_name>Urban Systems Institute, University of Hong Kong, Hong Kong</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0000-0001-9966-0807</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Baiyue</given_name>
<surname>He</surname>
<affiliations>
<institution><institution_name>Institute of Data Science, University of Hong Kong, Hong Kong</institution_name></institution>
</affiliations>
<ORCID>https://orcid.org/0009-0007-9787-9726</ORCID>
</person_name>
</contributors>
<publication_date>
<month>11</month>
<day>13</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>7312</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.07312</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.14100356</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/7312</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.07312</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.07312</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.07312.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="Kirkley2024HypergraphBinning">
<article_title>Inference of dynamic hypergraph
representations in temporal interaction data</article_title>
<author>Kirkley</author>
<journal_title>Physical Review E</journal_title>
<volume>109</volume>
<doi>10.1103/physreve.109.054306</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Inference of
dynamic hypergraph representations in temporal interaction data.
Physical Review E, 109, 054306.
https://doi.org/10.1103/physreve.109.054306</unstructured_citation>
</citation>
<citation key="Kirkley2023PopulationClustering">
<article_title>Compressing network populations with modal
networks reveals structural diversity</article_title>
<author>Kirkley</author>
<journal_title>Communications Physics</journal_title>
<volume>6</volume>
<doi>10.1038/s42005-023-01270-5</doi>
<cYear>2023</cYear>
<unstructured_citation>Kirkley, A., Rojas, A., Rosvall, M.,
&amp; Young, J.-G. (2023). Compressing network populations with modal
networks reveals structural diversity. Communications Physics, 6, 148.
https://doi.org/10.1038/s42005-023-01270-5</unstructured_citation>
</citation>
<citation key="Kirkley2022DistributionalRegionalization">
<article_title>Spatial regionalization based on optimal
information compression</article_title>
<author>Kirkley</author>
<journal_title>Communications Physics</journal_title>
<volume>5</volume>
<doi>10.1038/s42005-022-01029-4</doi>
<cYear>2022</cYear>
<unstructured_citation>Kirkley, A. (2022). Spatial
regionalization based on optimal information compression. Communications
Physics, 5, 249.
https://doi.org/10.1038/s42005-022-01029-4</unstructured_citation>
</citation>
<citation key="Kirkley2024HubIdentification">
<article_title>Identifying hubs in directed
networks</article_title>
<author>Kirkley</author>
<journal_title>Physical Review E</journal_title>
<volume>109</volume>
<doi>10.1103/physreve.109.034310</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Identifying hubs
in directed networks. Physical Review E, 109, 034310.
https://doi.org/10.1103/physreve.109.034310</unstructured_citation>
</citation>
<citation key="MorelBalbiKirkley2024CommunityRegionalization">
<article_title>Bayesian regionalization of urban mobility
networks</article_title>
<author>Morel-Balbi</author>
<journal_title>Physical Review Research</journal_title>
<volume>6</volume>
<doi>10.1103/physrevresearch.6.033307</doi>
<cYear>2024</cYear>
<unstructured_citation>Morel-Balbi, S., &amp; Kirkley, A.
(2024). Bayesian regionalization of urban mobility networks. Physical
Review Research, 6, 033307.
https://doi.org/10.1103/physrevresearch.6.033307</unstructured_citation>
</citation>
<citation key="kirkley2024fastnonparametricinferencenetwork">
<article_title>Fast nonparametric inference of network
backbones for graph sparsification</article_title>
<author>Kirkley</author>
<journal_title>arXiv:2409.06417</journal_title>
<doi>10.48550/arXiv.2409.06417</doi>
<cYear>2024</cYear>
<unstructured_citation>Kirkley, A. (2024). Fast
nonparametric inference of network backbones for graph sparsification.
arXiv:2409.06417.
https://doi.org/10.48550/arXiv.2409.06417</unstructured_citation>
</citation>
<citation key="barabasi2016networks">
<volume_title>Network science</volume_title>
<author>Barabási</author>
<cYear>2016</cYear>
<unstructured_citation>Barabási, A.-L. (2016). Network
science. Cambridge University Press.</unstructured_citation>
</citation>
<citation key="newman2018networks">
<volume_title>Networks</volume_title>
<author>Newman</author>
<doi>10.1093/oso/9780198805090.001.0001</doi>
<cYear>2018</cYear>
<unstructured_citation>Newman, M. (2018). Networks. Oxford
University Press.
https://doi.org/10.1093/oso/9780198805090.001.0001</unstructured_citation>
</citation>
<citation key="fortunato2010community">
<article_title>Community detection in graphs</article_title>
<author>Fortunato</author>
<journal_title>Physics Reports</journal_title>
<issue>3-5</issue>
<volume>486</volume>
<doi>10.1016/j.physrep.2009.11.002</doi>
<cYear>2010</cYear>
<unstructured_citation>Fortunato, S. (2010). Community
detection in graphs. Physics Reports, 486(3-5), 75–174.
https://doi.org/10.1016/j.physrep.2009.11.002</unstructured_citation>
</citation>
<citation key="peel2022statistical">
<article_title>Statistical inference links data and theory
in network science</article_title>
<author>Peel</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>13</volume>
<doi>10.1038/s41467-022-34267-9</doi>
<cYear>2022</cYear>
<unstructured_citation>Peel, L., Peixoto, T. P., &amp; De
Domenico, M. (2022). Statistical inference links data and theory in
network science. Nature Communications, 13(1), 6794.
https://doi.org/10.1038/s41467-022-34267-9</unstructured_citation>
</citation>
<citation key="young2022clustering">
<article_title>Clustering of heterogeneous populations of
networks</article_title>
<author>Young</author>
<journal_title>Physical Review E</journal_title>
<issue>1</issue>
<volume>105</volume>
<doi>10.1103/physreve.105.014312</doi>
<cYear>2022</cYear>
<unstructured_citation>Young, J.-G., Kirkley, A., &amp;
Newman, M. E. (2022). Clustering of heterogeneous populations of
networks. Physical Review E, 105(1), 014312.
https://doi.org/10.1103/physreve.105.014312</unstructured_citation>
</citation>
<citation key="battiston2021physics">
<article_title>The physics of higher-order interactions in
complex systems</article_title>
<author>Battiston</author>
<journal_title>Nature Physics</journal_title>
<issue>10</issue>
<volume>17</volume>
<doi>10.1038/s41567-021-01371-4</doi>
<cYear>2021</cYear>
<unstructured_citation>Battiston, F., Amico, E., Barrat, A.,
Bianconi, G., Ferraz de Arruda, G., Franceschiello, B., Iacopini, I.,
Kéfi, S., Latora, V., Moreno, Y., &amp; others. (2021). The physics of
higher-order interactions in complex systems. Nature Physics, 17(10),
1093–1098.
https://doi.org/10.1038/s41567-021-01371-4</unstructured_citation>
</citation>
<citation key="fajardo2022node">
<article_title>Node metadata can produce predictability
crossovers in network inference problems</article_title>
<author>Fajardo-Fontiveros</author>
<journal_title>Physical Review X</journal_title>
<issue>1</issue>
<volume>12</volume>
<doi>10.1103/physrevx.12.011010</doi>
<cYear>2022</cYear>
<unstructured_citation>Fajardo-Fontiveros, O., Guimerà, R.,
&amp; Sales-Pardo, M. (2022). Node metadata can produce predictability
crossovers in network inference problems. Physical Review X, 12(1),
011010.
https://doi.org/10.1103/physrevx.12.011010</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Binary file added joss.07312/10.21105.joss.07312.pdf
Binary file not shown.
Loading