Skip to content

Creating pull request for 10.21105.joss.06370 #5282

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Apr 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
301 changes: 301 additions & 0 deletions joss.06370/10.21105.joss.06370.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20240427T025502-a7134ba97f09a95ac960b303d1ec8655c14e4cad</doi_batch_id>
<timestamp>20240427025502</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>04</month>
<year>2024</year>
</publication_date>
<journal_volume>
<volume>9</volume>
</journal_volume>
<issue>96</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>Augmenty: A Python Library for Structured Text
Augmentation</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Kenneth</given_name>
<surname>Enevoldsen</surname>
<ORCID>https://orcid.org/0000-0001-8733-0966</ORCID>
</person_name>
</contributors>
<publication_date>
<month>04</month>
<day>27</day>
<year>2024</year>
</publication_date>
<pages>
<first_page>6370</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.06370</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.11002422</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/6370</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.06370</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.06370</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.06370.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="ribeiro-etal-2020-beyond">
<article_title>Beyond accuracy: Behavioral testing of NLP
models with CheckList</article_title>
<author>Ribeiro</author>
<journal_title>Proceedings of the 58th annual meeting of the
association for computational linguistics</journal_title>
<doi>10.18653/v1/2020.acl-main.442</doi>
<cYear>2020</cYear>
<unstructured_citation>Ribeiro, M. T., Wu, T., Guestrin, C.,
&amp; Singh, S. (2020). Beyond accuracy: Behavioral testing of NLP
models with CheckList. In D. Jurafsky, J. Chai, N. Schluter, &amp; J.
Tetreault (Eds.), Proceedings of the 58th annual meeting of the
association for computational linguistics (pp. 4902–4912). Association
for Computational Linguistics.
https://doi.org/10.18653/v1/2020.acl-main.442</unstructured_citation>
</citation>
<citation key="wei-zou-2019-eda">
<article_title>EDA: Easy data augmentation techniques for
boosting performance on text classification tasks</article_title>
<author>Wei</author>
<journal_title>Proceedings of the 2019 conference on
empirical methods in natural language processing and the 9th
international joint conference on natural language processing
(EMNLP-IJCNLP)</journal_title>
<doi>10.18653/v1/D19-1670</doi>
<cYear>2019</cYear>
<unstructured_citation>Wei, J., &amp; Zou, K. (2019). EDA:
Easy data augmentation techniques for boosting performance on text
classification tasks. In K. Inui, J. Jiang, V. Ng, &amp; X. Wan (Eds.),
Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on
natural language processing (EMNLP-IJCNLP) (pp. 6382–6388). Association
for Computational Linguistics.
https://doi.org/10.18653/v1/D19-1670</unstructured_citation>
</citation>
<citation key="spacy">
<article_title>spaCy: Industrial-strength natural language
processing in python</article_title>
<author>Honnibal</author>
<doi>10.5281/zenodo.1212303</doi>
<cYear>2020</cYear>
<unstructured_citation>Honnibal, M., Montani, I., Van
Landeghem, S., &amp; Boyd, A. (2020). spaCy: Industrial-strength natural
language processing in python.
https://doi.org/10.5281/zenodo.1212303</unstructured_citation>
</citation>
<citation key="goel-etal-2021-robustness">
<article_title>Robustness gym: Unifying the NLP evaluation
landscape</article_title>
<author>Goel</author>
<journal_title>Proceedings of the 2021 conference of the
north american chapter of the association for computational linguistics:
Human language technologies: demonstrations</journal_title>
<doi>10.18653/v1/2021.naacl-demos.6</doi>
<cYear>2021</cYear>
<unstructured_citation>Goel, K., Rajani, N. F., Vig, J.,
Taschdjian, Z., Bansal, M., &amp; Ré, C. (2021). Robustness gym:
Unifying the NLP evaluation landscape. In A. Sil &amp; X. V. Lin (Eds.),
Proceedings of the 2021 conference of the north american chapter of the
association for computational linguistics: Human language technologies:
demonstrations (pp. 42–55). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2021.naacl-demos.6</unstructured_citation>
</citation>
<citation key="wang2017effectiveness">
<article_title>The effectiveness of data augmentation in
image classification using deep learning</article_title>
<author>Wang</author>
<journal_title>Convolutional Neural Networks Vis.
Recognit</journal_title>
<issue>2017</issue>
<volume>11</volume>
<cYear>2017</cYear>
<unstructured_citation>Wang, J., Perez, L., &amp; others.
(2017). The effectiveness of data augmentation in image classification
using deep learning. Convolutional Neural Networks Vis. Recognit,
11(2017), 1–8.</unstructured_citation>
</citation>
<citation key="Park2019SpecAugmentAS">
<article_title>SpecAugment: A simple data augmentation
method for automatic speech recognition</article_title>
<author>Park</author>
<journal_title>Interspeech</journal_title>
<cYear>2019</cYear>
<unstructured_citation>Park, D. S., Chan, W., Zhang, Y.,
Chiu, C.-C., Zoph, B., Cubuk, E. D., &amp; Le, Q. V. (2019).
SpecAugment: A simple data augmentation method for automatic speech
recognition. Interspeech.
https://api.semanticscholar.org/CorpusID:121321299</unstructured_citation>
</citation>
<citation key="lassen-etal-2023-detecting">
<article_title>Detecting intersectionality in NER models: A
data-driven approach</article_title>
<author>Lassen</author>
<journal_title>Proceedings of the 7th joint SIGHUM workshop
on computational linguistics for cultural heritage, social sciences,
humanities and literature</journal_title>
<doi>10.18653/v1/2023.latechclfl-1.13</doi>
<cYear>2023</cYear>
<unstructured_citation>Lassen, I. M. S., Almasi, M.,
Enevoldsen, K., &amp; Kristensen-McLachlan, R. D. (2023). Detecting
intersectionality in NER models: A data-driven approach. In S.
Degaetano-Ortlieb, A. Kazantseva, N. Reiter, &amp; S. Szpakowicz (Eds.),
Proceedings of the 7th joint SIGHUM workshop on computational
linguistics for cultural heritage, social sciences, humanities and
literature (pp. 116–127). Association for Computational Linguistics.
https://doi.org/10.18653/v1/2023.latechclfl-1.13</unstructured_citation>
</citation>
<citation key="nielsen-2023-scandeval">
<article_title>ScandEval: A benchmark for Scandinavian
natural language processing</article_title>
<author>Nielsen</author>
<journal_title>Proceedings of the 24th nordic conference on
computational linguistics (NoDaLiDa)</journal_title>
<cYear>2023</cYear>
<unstructured_citation>Nielsen, D. (2023). ScandEval: A
benchmark for Scandinavian natural language processing. In T. Alumäe
&amp; M. Fishel (Eds.), Proceedings of the 24th nordic conference on
computational linguistics (NoDaLiDa) (pp. 185–201). University of Tartu
Library.
https://aclanthology.org/2023.nodalida-1.20</unstructured_citation>
</citation>
<citation key="pandya_hetpandyatextgenie_2023">
<article_title>Hetpandya/textgenie</article_title>
<author>Pandya</author>
<cYear>2023</cYear>
<unstructured_citation>Pandya, H. (2023).
Hetpandya/textgenie.
https://github.com/hetpandya/textgenie</unstructured_citation>
</citation>
<citation key="marivate2020improving">
<article_title>Improving short text classification through
global augmentation methods</article_title>
<author>Marivate</author>
<journal_title>International cross-domain conference for
machine learning and knowledge extraction</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Marivate, V., &amp; Sefara, T.
(2020). Improving short text classification through global augmentation
methods. International Cross-Domain Conference for Machine Learning and
Knowledge Extraction, 385–399.</unstructured_citation>
</citation>
<citation key="morris2020textattack">
<article_title>TextAttack: A framework for adversarial
attacks, data augmentation, and adversarial training in
NLP</article_title>
<author>Morris</author>
<journal_title>Proceedings of the 2020 conference on
empirical methods in natural language processing: System
demonstrations</journal_title>
<cYear>2020</cYear>
<unstructured_citation>Morris, J., Lifland, E., Yoo, J. Y.,
Grigsby, J., Jin, D., &amp; Qi, Y. (2020). TextAttack: A framework for
adversarial attacks, data augmentation, and adversarial training in NLP.
Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations,
119–126.</unstructured_citation>
</citation>
<citation key="bird2009natural">
<article_title>Natural language processing with python.
O’reilly media inc., sebastopol, USA</article_title>
<author>Bird</author>
<cYear>2009</cYear>
<unstructured_citation>Bird, S., Loper, E., &amp; Klein, E.
(2009). Natural language processing with python. O’reilly media inc.,
sebastopol, USA.</unstructured_citation>
</citation>
<citation key="miller-1994-wordnet">
<article_title>WordNet: A lexical database for
English</article_title>
<author>Miller</author>
<journal_title>Human Language Technology: Proceedings of a
workshop held at Plainsboro, New Jersey, March 8-11,
1994</journal_title>
<cYear>1994</cYear>
<unstructured_citation>Miller, G. A. (1994). WordNet: A
lexical database for English. Human Language Technology: Proceedings of
a Workshop Held at Plainsboro, New Jersey, March 8-11, 1994.
https://aclanthology.org/H94-1111</unstructured_citation>
</citation>
<citation key="pennington-etal-2014-glove">
<article_title>GloVe global vectors for word
representation</article_title>
<author>Pennington</author>
<journal_title>Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP)</journal_title>
<doi>10.3115/v1/D14-1162</doi>
<cYear>2014</cYear>
<unstructured_citation>Pennington, J., Socher, R., &amp;
Manning, C. (2014). GloVe global vectors for word representation. In A.
Moschitti, B. Pang, &amp; W. Daelemans (Eds.), Proceedings of the 2014
conference on empirical methods in natural language processing (EMNLP)
(pp. 1532–1543). Association for Computational Linguistics.
https://doi.org/10.3115/v1/D14-1162</unstructured_citation>
</citation>
<citation key="sloth_dadebiasgenda-lens_2023">
<article_title>DaDebias/genda-lens</article_title>
<author>Sloth</author>
<cYear>2023</cYear>
<unstructured_citation>Sloth, T. R., &amp; Rybner, A. S.
(2023). DaDebias/genda-lens. DaDebias.
https://github.com/DaDebias/genda-lens</unstructured_citation>
</citation>
<citation key="Enevoldsen_DaCy_A_Unified_2021">
<article_title>DaCy: A Unified Framework for Danish
NLP</article_title>
<author>Enevoldsen</author>
<cYear>2021</cYear>
<unstructured_citation>Enevoldsen, K., Hansen, L., &amp;
Nielbo, K. L. (2021). DaCy: A Unified Framework for Danish NLP.
https://ceur-ws.org/Vol-2989/short_paper24.pdf</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading