Skip to content

Creating pull request for 10.21105.joss.04528 #3410

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 3, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
363 changes: 363 additions & 0 deletions joss.04528/10.21105.joss.04528.crossref.xml
Original file line number Diff line number Diff line change
@@ -0,0 +1,363 @@
<?xml version="1.0" encoding="UTF-8"?>
<doi_batch xmlns="http://www.crossref.org/schema/5.3.1"
xmlns:ai="http://www.crossref.org/AccessIndicators.xsd"
xmlns:rel="http://www.crossref.org/relations.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="5.3.1"
xsi:schemaLocation="http://www.crossref.org/schema/5.3.1 http://www.crossref.org/schemas/crossref5.3.1.xsd">
<head>
<doi_batch_id>20220803T053327-a2082ec32bc409b391ce5cc4d6dda0fcd9ddf5c1</doi_batch_id>
<timestamp>20220803053327</timestamp>
<depositor>
<depositor_name>JOSS Admin</depositor_name>
<email_address>[email protected]</email_address>
</depositor>
<registrant>The Open Journal</registrant>
</head>
<body>
<journal>
<journal_metadata>
<full_title>Journal of Open Source Software</full_title>
<abbrev_title>JOSS</abbrev_title>
<issn media_type="electronic">2475-9066</issn>
<doi_data>
<doi>10.21105/joss</doi>
<resource>https://joss.theoj.org/</resource>
</doi_data>
</journal_metadata>
<journal_issue>
<publication_date media_type="online">
<month>08</month>
<year>2022</year>
</publication_date>
<journal_volume>
<volume>7</volume>
</journal_volume>
<issue>76</issue>
</journal_issue>
<journal_article publication_type="full_text">
<titles>
<title>xtal2png: A Python package for representing crystal
structure as PNG files</title>
</titles>
<contributors>
<person_name sequence="first" contributor_role="author">
<given_name>Sterling G.</given_name>
<surname>Baird</surname>
<ORCID>https://orcid.org/0000-0002-4491-6876</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Kevin M.</given_name>
<surname>Jablonka</surname>
<ORCID>https://orcid.org/0000-0003-4894-4660</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Michael D.</given_name>
<surname>Alverson</surname>
<ORCID>https://orcid.org/0000-0002-4857-7584</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Hasan M.</given_name>
<surname>Sayeed</surname>
<ORCID>https://orcid.org/0000-0002-6583-7755</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Mohammed Faris</given_name>
<surname>Khan</surname>
<ORCID>https://orcid.org/0000-0001-7527-6368</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Colton</given_name>
<surname>Seegmiller</surname>
<ORCID>https://orcid.org/0000-0001-9511-2918</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Berend</given_name>
<surname>Smit</surname>
<ORCID>https://orcid.org/0000-0003-4653-8562</ORCID>
</person_name>
<person_name sequence="additional"
contributor_role="author">
<given_name>Taylor D.</given_name>
<surname>Sparks</surname>
<ORCID>https://orcid.org/0000-0001-8020-7711</ORCID>
</person_name>
</contributors>
<publication_date>
<month>08</month>
<day>03</day>
<year>2022</year>
</publication_date>
<pages>
<first_page>4528</first_page>
</pages>
<publisher_item>
<identifier id_type="doi">10.21105/joss.04528</identifier>
</publisher_item>
<ai:program name="AccessIndicators">
<ai:license_ref applies_to="vor">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="am">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
<ai:license_ref applies_to="tdm">http://creativecommons.org/licenses/by/4.0/</ai:license_ref>
</ai:program>
<rel:program>
<rel:related_item>
<rel:description>Software archive</rel:description>
<rel:inter_work_relation relationship-type="references" identifier-type="doi">10.5281/zenodo.6941663</rel:inter_work_relation>
</rel:related_item>
<rel:related_item>
<rel:description>GitHub review issue</rel:description>
<rel:inter_work_relation relationship-type="hasReview" identifier-type="uri">https://github.com/openjournals/joss-reviews/issues/4528</rel:inter_work_relation>
</rel:related_item>
</rel:program>
<doi_data>
<doi>10.21105/joss.04528</doi>
<resource>https://joss.theoj.org/papers/10.21105/joss.04528</resource>
<collection property="text-mining">
<item>
<resource mime_type="application/pdf">https://joss.theoj.org/papers/10.21105/joss.04528.pdf</resource>
</item>
</collection>
</doi_data>
<citation_list>
<citation key="gomez-bombarelliAutomaticChemicalDesign2016">
<article_title>Automatic chemical design using a data-driven
continuous representation of molecules</article_title>
<author>Gómez-Bombarelli</author>
<doi>10.48550/ARXIV.1610.02415</doi>
<cYear>2016</cYear>
<unstructured_citation>Gómez-Bombarelli, R., Wei, J. N.,
Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla,
D., Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., &amp;
Aspuru-Guzik, A. (2016). Automatic chemical design using a data-driven
continuous representation of molecules.
https://doi.org/10.48550/ARXIV.1610.02415</unstructured_citation>
</citation>
<citation key="goodallPredictingMaterialsProperties2019">
<article_title>Predicting materials properties without
crystal structure: Deep representation learning from
stoichiometry</article_title>
<author>Goodall</author>
<doi>10.48550/ARXIV.1910.00617</doi>
<cYear>2019</cYear>
<unstructured_citation>Goodall, R. E. A., &amp; Lee, A. A.
(2019). Predicting materials properties without crystal structure: Deep
representation learning from stoichiometry.
https://doi.org/10.48550/ARXIV.1910.00617</unstructured_citation>
</citation>
<citation key="goodallPredictingMaterialsProperties2020">
<article_title>Predicting materials properties without
crystal structure: Deep representation learning from
stoichiometry</article_title>
<author>Goodall</author>
<journal_title>Nature Communications</journal_title>
<issue>1</issue>
<volume>11</volume>
<doi>10.1038/s41467-020-19964-7</doi>
<issn>2041-1723</issn>
<cYear>2020</cYear>
<unstructured_citation>Goodall, R. E. A., &amp; Lee, A. A.
(2020). Predicting materials properties without crystal structure: Deep
representation learning from stoichiometry. Nature Communications,
11(1), 6280.
https://doi.org/10.1038/s41467-020-19964-7</unstructured_citation>
</citation>
<citation key="kingmaAutoEncodingVariationalBayes2014a">
<article_title>Auto-Encoding Variational
Bayes</article_title>
<author>Kingma</author>
<cYear>2014</cYear>
<unstructured_citation>Kingma, D. P., &amp; Welling, M.
(2014). Auto-Encoding Variational Bayes (No. arXiv:1312.6114). arXiv.
https://arxiv.org/abs/1312.6114</unstructured_citation>
</citation>
<citation key="kipfSemisupervisedClassificationGraph2016">
<article_title>Semi-supervised classification with graph
convolutional networks</article_title>
<author>Kipf</author>
<doi>10.48550/ARXIV.1609.02907</doi>
<cYear>2016</cYear>
<unstructured_citation>Kipf, T. N., &amp; Welling, M.
(2016). Semi-supervised classification with graph convolutional
networks. arXiv.
https://doi.org/10.48550/ARXIV.1609.02907</unstructured_citation>
</citation>
<citation key="ongPythonMaterialsGenomics2013">
<article_title>Python Materials Genomics (pymatgen): A
robust, open-source python library for materials
analysis</article_title>
<author>Ong</author>
<journal_title>Computational Materials
Science</journal_title>
<volume>68</volume>
<doi>10.1016/j.commatsci.2012.10.028</doi>
<cYear>2013</cYear>
<unstructured_citation>Ong, S. P., Richards, W. D., Jain,
A., Hautier, G., Kocher, M., Cholia, S., Gunter, D., Chevrier, V. L.,
Persson, K. A., &amp; Ceder, G. (2013). Python Materials Genomics
(pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68, 314–319.
https://doi.org/10.1016/j.commatsci.2012.10.028</unstructured_citation>
</citation>
<citation key="renInvertibleCrystallographicRepresentation2022a">
<article_title>An invertible crystallographic representation
for general inverse design of inorganic crystals with targeted
properties</article_title>
<author>Ren</author>
<journal_title>Matter</journal_title>
<issue>1</issue>
<volume>5</volume>
<doi>10.1016/j.matt.2021.11.032</doi>
<issn>2590-2385</issn>
<cYear>2022</cYear>
<unstructured_citation>Ren, Z., Tian, S. I. P., Noh, J.,
Oviedo, F., Xing, G., Li, J., Liang, Q., Zhu, R., Aberle, A. G., Sun,
S., Wang, X., Liu, Y., Li, Q., Jayavelu, S., Hippalgaonkar, K., Jung,
Y., &amp; Buonassisi, T. (2022). An invertible crystallographic
representation for general inverse design of inorganic crystals with
targeted properties. Matter, 5(1), 314–335.
https://doi.org/10.1016/j.matt.2021.11.032</unstructured_citation>
</citation>
<citation key="sahariaPaletteImagetoImageDiffusion2022a">
<article_title>Palette: Image-to-Image Diffusion
Models</article_title>
<author>Saharia</author>
<journal_title>Special Interest Group on Computer Graphics
and Interactive Techniques Conference Proceedings</journal_title>
<doi>10.1145/3528233.3530757</doi>
<isbn>978-1-4503-9337-9</isbn>
<cYear>2022</cYear>
<unstructured_citation>Saharia, C., Chan, W., Chang, H.,
Lee, C., Ho, J., Salimans, T., Fleet, D., &amp; Norouzi, M. (2022).
Palette: Image-to-Image Diffusion Models. Special Interest Group on
Computer Graphics and Interactive Techniques Conference Proceedings,
1–10. https://doi.org/10.1145/3528233.3530757</unstructured_citation>
</citation>
<citation key="selfies">
<article_title>SELFIES and the future of molecular string
representations</article_title>
<author>Krenn</author>
<doi>10.48550/ARXIV.2204.00056</doi>
<cYear>2022</cYear>
<unstructured_citation>Krenn, M., Ai, Q., Barthel, S.,
Carson, N., Frei, A., Frey, N. C., Friederich, P., Gaudin, T., Gayle, A.
A., Jablonka, K. M., Lameiro, R. F., Lemm, D., Lo, A., Moosavi, S. M.,
Nápoles-Duarte, J. M., Nigam, A., Pollice, R., Rajan, K.,
Schatzschneider, U., … Aspuru-Guzik, A. (2022). SELFIES and the future
of molecular string representations. arXiv.
https://doi.org/10.48550/ARXIV.2204.00056</unstructured_citation>
</citation>
<citation key="sohl-dicksteinDeepUnsupervisedLearning2015">
<article_title>Deep Unsupervised Learning using
Nonequilibrium Thermodynamics</article_title>
<author>Sohl-Dickstein</author>
<cYear>2015</cYear>
<unstructured_citation>Sohl-Dickstein, J., Weiss, E. A.,
Maheswaranathan, N., &amp; Ganguli, S. (2015). Deep Unsupervised
Learning using Nonequilibrium Thermodynamics (No. arXiv:1503.03585).
arXiv. https://arxiv.org/abs/1503.03585</unstructured_citation>
</citation>
<citation key="vaswaniAttentionAllYou2017">
<article_title>Attention Is All You Need</article_title>
<author>Vaswani</author>
<cYear>2017</cYear>
<unstructured_citation>Vaswani, A., Shazeer, N., Parmar, N.,
Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., &amp; Polosukhin, I.
(2017). Attention Is All You Need (No. arXiv:1706.03762). arXiv.
https://arxiv.org/abs/1706.03762</unstructured_citation>
</citation>
<citation key="wangCompositionallyRestrictedAttentionbased2021">
<article_title>Compositionally restricted attention-based
network for materials property predictions</article_title>
<author>Wang</author>
<journal_title>npj Computational Materials</journal_title>
<issue>1</issue>
<volume>7</volume>
<doi>10.1038/s41524-021-00545-1</doi>
<issn>2057-3960</issn>
<cYear>2021</cYear>
<unstructured_citation>Wang, A. Y.-T., Kauwe, S. K.,
Murdock, R. J., &amp; Sparks, T. D. (2021). Compositionally restricted
attention-based network for materials property predictions. Npj
Computational Materials, 7(1), 77.
https://doi.org/10.1038/s41524-021-00545-1</unstructured_citation>
</citation>
<citation key="wangCompositionallyrestrictedAttentionbasedNetwork2020">
<article_title>Compositionally-restricted attention-based
network for materials property prediction</article_title>
<author>Wang</author>
<doi>10.26434/chemrxiv.11869026.v1</doi>
<cYear>2020</cYear>
<unstructured_citation>Wang, A., Kauwe, S., Murdock, R.,
&amp; Sparks, T. (2020). Compositionally-restricted attention-based
network for materials property prediction.
https://doi.org/10.26434/chemrxiv.11869026.v1</unstructured_citation>
</citation>
<citation key="weiningerSMILESChemicalLanguage1988">
<article_title>SMILES, a chemical language and information
system. 1. Introduction to methodology and encoding
rules</article_title>
<author>Weininger</author>
<journal_title>Journal of Chemical Information and Computer
Sciences</journal_title>
<issue>1</issue>
<volume>28</volume>
<doi>10.1021/ci00057a005</doi>
<issn>0095-2338</issn>
<cYear>1988</cYear>
<unstructured_citation>Weininger, D. (1988). SMILES, a
chemical language and information system. 1. Introduction to methodology
and encoding rules. Journal of Chemical Information and Computer
Sciences, 28(1), 31–36.
https://doi.org/10.1021/ci00057a005</unstructured_citation>
</citation>
<citation key="xieCrystalDiffusionVariational2021">
<article_title>Crystal Diffusion Variational Autoencoder for
Periodic Material Generation</article_title>
<author>Xie</author>
<cYear>2021</cYear>
<unstructured_citation>Xie, T., Fu, X., Ganea, O.-E.,
Barzilay, R., &amp; Jaakkola, T. (2021). Crystal Diffusion Variational
Autoencoder for Periodic Material Generation (No. arXiv:2110.06197v1).
arXiv. https://arxiv.org/abs/2110.06197v1</unstructured_citation>
</citation>
<citation key="xieCrystalDiffusionVariational2022">
<article_title>Crystal Diffusion Variational Autoencoder for
Periodic Material Generation</article_title>
<author>Xie</author>
<journal_title>arXiv:2110.06197 [cond-mat,
physics:physics]</journal_title>
<cYear>2022</cYear>
<unstructured_citation>Xie, T., Fu, X., Ganea, O.-E.,
Barzilay, R., &amp; Jaakkola, T. (2022). Crystal Diffusion Variational
Autoencoder for Periodic Material Generation. arXiv:2110.06197
[Cond-Mat, Physics:physics].
https://arxiv.org/abs/2110.06197</unstructured_citation>
</citation>
<citation key="xieCrystalGraphConvolutional2018">
<article_title>Crystal Graph Convolutional Neural Networks
for an Accurate and Interpretable Prediction of Material
Properties</article_title>
<author>Xie</author>
<journal_title>Physical Review Letters</journal_title>
<issue>14</issue>
<volume>120</volume>
<doi>10.1103/PhysRevLett.120.145301</doi>
<issn>0031-9007</issn>
<cYear>2018</cYear>
<unstructured_citation>Xie, T., &amp; Grossman, J. C.
(2018). Crystal Graph Convolutional Neural Networks for an Accurate and
Interpretable Prediction of Material Properties. Physical Review
Letters, 120(14), 145301.
https://doi.org/10.1103/PhysRevLett.120.145301</unstructured_citation>
</citation>
</citation_list>
</journal_article>
</journal>
</body>
</doi_batch>
Loading