Skip to content

[Bug] 在Ascend架构下使用deploy.py转换Ascend的om模型报错 #1766

Open
@mutieying

Description

@mutieying

Checklist

  • I have searched related issues but cannot get the expected help.
  • 2. I have read the FAQ documentation but cannot get the expected help.
  • 3. The bug has not been fixed in the latest version.

Describe the bug

显卡是华为的Atlas 300I Pro,在上面安装了mmdetection和mmdeploy0.12.0。下载了openmmlab的faster-rcnn模型http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth,使用命令python tools/deploy.py configs/mmdet/detection/detection_ascend_static-800x1344.py ./mmdet_demo/faster_rcnn_r50_fpn_1x_coco.py ./mmdet_demo/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth demo/resources/det.jpg --work-dir mmdeploy_models/mmdet/faster_rcnn/cann --device cpu --dump-info转换模型时报下面的错
image
我找到报错的文件tensor_getitem.py,加上下面的两句。就可以正常转换成onnx和Ascend的om模型,推理不报错,但是没结果。
image

请问这是什么原因呢?
另外,我转换mmcls的模型是没问题的,可以正确推理。
整个mmdeploy部署的安装部署过程我是参考这个链接做的。https://bbs.huaweicloud.com/blogs/385709

Reproduction

python tools/deploy.py configs/mmdet/detection/detection_ascend_static-800x1344.py ./mmdet_demo/faster_rcnn_r50_fpn_1x_coco.py ./mmdet_demo/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth demo/resources/det.jpg --work-dir mmdeploy_models/mmdet/faster_rcnn/cann --device cpu --dump-info

Environment

2023-02-15 15:00:19,820 - mmdeploy - INFO - 

2023-02-15 15:00:19,820 - mmdeploy - INFO - **********Environmental information**********
2023-02-15 15:00:20,017 - mmdeploy - INFO - sys.platform: linux
2023-02-15 15:00:20,018 - mmdeploy - INFO - Python: 3.8.0 (default, Dec  9 2021, 17:53:27) [GCC 8.4.0]
2023-02-15 15:00:20,018 - mmdeploy - INFO - CUDA available: False
2023-02-15 15:00:20,018 - mmdeploy - INFO - GCC: x86_64-linux-gnu-gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
2023-02-15 15:00:20,018 - mmdeploy - INFO - PyTorch: 1.8.1+cpu
2023-02-15 15:00:20,018 - mmdeploy - INFO - PyTorch compiling details: PyTorch built with:
  - GCC 7.3
  - C++ Version: 201402
  - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v1.7.0 (Git Hash 7aed236906b1f7a05c0917e5257a1af05e9ff683)
  - OpenMP 201511 (a.k.a. OpenMP 4.5)
  - NNPACK is enabled
  - CPU capability usage: AVX2
  - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.8.1, USE_CUDA=0, USE_CUDNN=OFF, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=OFF, USE_NNPACK=ON, USE_OPENMP=ON, 

2023-02-15 15:00:20,018 - mmdeploy - INFO - TorchVision: 0.9.1+cu102
2023-02-15 15:00:20,018 - mmdeploy - INFO - OpenCV: 4.7.0
2023-02-15 15:00:20,018 - mmdeploy - INFO - MMCV: 1.7.1
2023-02-15 15:00:20,018 - mmdeploy - INFO - MMCV Compiler: GCC 7.5
2023-02-15 15:00:20,018 - mmdeploy - INFO - MMCV CUDA Compiler: not available
2023-02-15 15:00:20,018 - mmdeploy - INFO - MMDeploy: 0.12.0+31b099a
2023-02-15 15:00:20,018 - mmdeploy - INFO - 

2023-02-15 15:00:20,018 - mmdeploy - INFO - **********Backend information**********
2023-02-15 15:00:20,028 - mmdeploy - INFO - tensorrt:	None
2023-02-15 15:00:20,071 - mmdeploy - INFO - ONNXRuntime:	1.13.1
2023-02-15 15:00:20,071 - mmdeploy - INFO - ONNXRuntime-gpu:	None
2023-02-15 15:00:20,071 - mmdeploy - INFO - ONNXRuntime custom ops:	NotAvailable
2023-02-15 15:00:20,072 - mmdeploy - INFO - pplnn:	None
2023-02-15 15:00:20,074 - mmdeploy - INFO - ncnn:	None
2023-02-15 15:00:20,075 - mmdeploy - INFO - snpe:	None
2023-02-15 15:00:20,076 - mmdeploy - INFO - openvino:	None
2023-02-15 15:00:20,078 - mmdeploy - INFO - torchscript:	1.8.1+cpu
2023-02-15 15:00:20,078 - mmdeploy - INFO - torchscript custom ops:	NotAvailable
2023-02-15 15:00:20,125 - mmdeploy - INFO - rknn-toolkit:	None
2023-02-15 15:00:20,125 - mmdeploy - INFO - rknn2-toolkit:	None
2023-02-15 15:00:20,160 - mmdeploy - INFO - ascend:	None
2023-02-15 15:00:20,161 - mmdeploy - INFO - coreml:	None
2023-02-15 15:00:20,162 - mmdeploy - INFO - tvm:	None
2023-02-15 15:00:20,162 - mmdeploy - INFO - 

2023-02-15 15:00:20,162 - mmdeploy - INFO - **********Codebase information**********
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmdet:	2.28.1
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmseg:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmcls:	0.25.0
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmocr:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmedit:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmdet3d:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmpose:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmrotate:	None
2023-02-15 15:00:20,165 - mmdeploy - INFO - mmaction:	None

Error traceback

No response

Metadata

Metadata

Assignees

Labels

No labels
No labels

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions