Skip to content

πŸš€ feat(model): add GLASS model into Anomalib #2629

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 16 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/anomalib/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@
Fastflow,
Fre,
Ganomaly,
Glass,
Padim,
Patchcore,
ReverseDistillation,
Expand Down Expand Up @@ -102,6 +103,7 @@ class UnknownModelError(ModuleNotFoundError):
"Fastflow",
"Fre",
"Ganomaly",
"Glass",
"Padim",
"Patchcore",
"ReverseDistillation",
Expand Down
2 changes: 1 addition & 1 deletion src/anomalib/models/components/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@

from .base import AnomalibModule, BufferListMixin, DynamicBufferMixin, MemoryBankMixin
from .dimensionality_reduction import PCA, SparseRandomProjection
from .feature_extractors import TimmFeatureExtractor
from .feature_extractors import TimmFeatureExtractor, NetworkFeatureAggregator
from .filters import GaussianBlur2d
from .sampling import KCenterGreedy
from .stats import GaussianKDE, MultiVariateGaussian
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

from .timm import TimmFeatureExtractor
from .utils import dryrun_find_featuremap_dims

from .network_feature_extractor import NetworkFeatureAggregator
__all__ = [
"dryrun_find_featuremap_dims",
"TimmFeatureExtractor",
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
import torch
from torch import nn
import copy


class NetworkFeatureAggregator(torch.nn.Module):
"""Efficient extraction of network features."""

def __init__(self, backbone, layers_to_extract_from, pre_trained=False):
super(NetworkFeatureAggregator, self).__init__()
"""Extraction of network features.

Runs a network only to the last layer of the list of layers where
network features should be extracted from.

Args:
backbone: torchvision.model
layers_to_extract_from: [list of str]
"""
self.layers_to_extract_from = layers_to_extract_from
self.backbone = backbone
self.pre_trained = pre_trained
if not hasattr(backbone, "hook_handles"):
self.backbone.hook_handles = []
for handle in self.backbone.hook_handles:
handle.remove()
self.outputs = {}

for extract_layer in layers_to_extract_from:
self.register_hook(extract_layer)


def forward(self, images, eval=True):
self.outputs.clear()
if not self.pre_trained and not eval:
self.backbone(images)
else:
with torch.no_grad():
try:
_ = self.backbone(images)
except LastLayerToExtractReachedException:
pass
return self.outputs

def feature_dimensions(self, input_shape):
"""Computes the feature dimensions for all layers given input_shape."""
_input = torch.ones([1] + list(input_shape))
_output = self(_input)
return [_output[layer].shape[1] for layer in self.layers_to_extract_from]

def register_hook(self, layer_name):
module = self.find_module(self.backbone, layer_name)
if module is not None:
forward_hook = ForwardHook(
self.outputs, layer_name, self.layers_to_extract_from[-1]
)
if isinstance(module, torch.nn.Sequential):
hook = module[-1].register_forward_hook(forward_hook)
else:
hook = module.register_forward_hook(forward_hook)
self.backbone.hook_handles.append(hook)
else:
raise ValueError(f"Module {layer_name} not found in the model")

def find_module(self, model, module_name):
for name, module in model.named_modules():
if name == module_name:
return module
elif "." in module_name:
father, child = module_name.split(".", 1)
if name == father:
return self.find_module(module, child)
return None


class ForwardHook:
def __init__(self, hook_dict, layer_name: str, last_layer_to_extract: str):
self.hook_dict = hook_dict
self.layer_name = layer_name
self.raise_exception_to_break = copy.deepcopy(
layer_name == last_layer_to_extract
)

def __call__(self, module, input, output):
self.hook_dict[self.layer_name] = output
return None


class LastLayerToExtractReachedException(Exception):
pass
4 changes: 4 additions & 0 deletions src/anomalib/models/image/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,7 @@
from .fastflow import Fastflow
from .fre import Fre
from .ganomaly import Ganomaly
from .glass import Glass
from .padim import Padim
from .patchcore import Patchcore
from .reverse_distillation import ReverseDistillation
Expand All @@ -76,6 +77,7 @@
"Fastflow",
"Fre",
"Ganomaly",
"Glass",
"Padim",
"Patchcore",
"ReverseDistillation",
Expand All @@ -84,4 +86,6 @@
"Uflow",
"VlmAd",
"WinClip",
"Padim",
"Glass",
]
4 changes: 4 additions & 0 deletions src/anomalib/models/image/glass/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Copyright (C) 2022-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from .lightning_model import Glass as Glass
56 changes: 56 additions & 0 deletions src/anomalib/models/image/glass/backbones.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,56 @@
# Copyright (C) 2022-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import torchvision.models as models
import timm

"""copy from: https://github.com/cqylunlun/GLASS/blob/main/backbones.py
This provides mechanism to import any of the given backbones using its name.
"""
_BACKBONES = {
"alexnet": "models.alexnet(pretrained=True)",
"resnet18": "models.resnet18(pretrained=True)",
"resnet50": "models.resnet50(pretrained=True)",
"resnet101": "models.resnet101(pretrained=True)",
"resnext101": "models.resnext101_32x8d(pretrained=True)",
"resnet200": 'timm.create_model("resnet200", pretrained=True)',
"resnest50": 'timm.create_model("resnest50d_4s2x40d", pretrained=True)',
"resnetv2_50_bit": 'timm.create_model("resnetv2_50x3_bitm", pretrained=True)',
"resnetv2_50_21k": 'timm.create_model("resnetv2_50x3_bitm_in21k", pretrained=True)',
"resnetv2_101_bit": 'timm.create_model("resnetv2_101x3_bitm", pretrained=True)',
"resnetv2_101_21k": 'timm.create_model("resnetv2_101x3_bitm_in21k", pretrained=True)',
"resnetv2_152_bit": 'timm.create_model("resnetv2_152x4_bitm", pretrained=True)',
"resnetv2_152_21k": 'timm.create_model("resnetv2_152x4_bitm_in21k", pretrained=True)',
"resnetv2_152_384": 'timm.create_model("resnetv2_152x2_bit_teacher_384", pretrained=True)',
"resnetv2_101": 'timm.create_model("resnetv2_101", pretrained=True)',
"vgg11": "models.vgg11(pretrained=True)",
"vgg19": "models.vgg19(pretrained=True)",
"vgg19_bn": "models.vgg19_bn(pretrained=True)",
"wideresnet50": "models.wide_resnet50_2(pretrained=True)",
"wideresnet101": "models.wide_resnet101_2(pretrained=True)",
"mnasnet_100": 'timm.create_model("mnasnet_100", pretrained=True)',
"mnasnet_a1": 'timm.create_model("mnasnet_a1", pretrained=True)',
"mnasnet_b1": 'timm.create_model("mnasnet_b1", pretrained=True)',
"densenet121": 'timm.create_model("densenet121", pretrained=True)',
"densenet201": 'timm.create_model("densenet201", pretrained=True)',
"inception_v4": 'timm.create_model("inception_v4", pretrained=True)',
"vit_small": 'timm.create_model("vit_small_patch16_224", pretrained=True)',
"vit_base": 'timm.create_model("vit_base_patch16_224", pretrained=True)',
"vit_large": 'timm.create_model("vit_large_patch16_224", pretrained=True)',
"vit_r50": 'timm.create_model("vit_large_r50_s32_224", pretrained=True)',
"vit_deit_base": 'timm.create_model("deit_base_patch16_224", pretrained=True)',
"vit_deit_distilled": 'timm.create_model("deit_base_distilled_patch16_224", pretrained=True)',
"vit_swin_base": 'timm.create_model("swin_base_patch4_window7_224", pretrained=True)',
"vit_swin_large": 'timm.create_model("swin_large_patch4_window7_224", pretrained=True)',
"efficientnet_b7": 'timm.create_model("tf_efficientnet_b7", pretrained=True)',
"efficientnet_b5": 'timm.create_model("tf_efficientnet_b5", pretrained=True)',
"efficientnet_b3": 'timm.create_model("tf_efficientnet_b3", pretrained=True)',
"efficientnet_b1": 'timm.create_model("tf_efficientnet_b1", pretrained=True)',
"efficientnetv2_m": 'timm.create_model("tf_efficientnetv2_m", pretrained=True)',
"efficientnetv2_l": 'timm.create_model("tf_efficientnetv2_l", pretrained=True)',
"efficientnet_b3a": 'timm.create_model("efficientnet_b3a", pretrained=True)',
}


def load(name):
return eval(_BACKBONES[name])
Loading
Loading