Description
Hello
I'm trying to create a PMML file that includes a specification for how to handle invalid values for both numerical and categorical features. I'm getting the PMML output I expect for the numerical features, but the categorical features don't have any tags mentioning invalidValueTreatment in the schema.
I've tried two things: handling invalid values as missing and handling invalid values by assigning them a specific value (both in code below), but am getting the same result.
Reproducible example:
import pandas as pd
import numpy as np
from sklearn_pandas import DataFrameMapper
from sklearn2pmml.decoration import CategoricalDomain, ContinuousDomain
from sklearn2pmml import sklearn2pmml
from sklearn2pmml.pipeline import PMMLPipeline
from sklearn.preprocessing import OneHotEncoder
from jpmml_evaluator import make_evaluator
import xgboost as xgb
df = pd.DataFrame([(1, 1, 'a'), (0, 2,'a'), (1, 3, 'b'), (1, 4, 'b'), (0, 5, 'c'), (1, 6, 'c'), (0, 7, 'c')], columns = ['Y', 'X1', 'X2'])
print(df)
numerical_cols = ['X1']
categorical_cols = ['X2']
### attempt 1: handle invalid values as missing
mapper = DataFrameMapper([
(categorical_cols, [CategoricalDomain(invalid_value_treatment = "as_missing",
missing_value_replacement = "OTHER"), OneHotEncoder()]),
(numerical_cols, [ContinuousDomain(invalid_value_treatment = "as_missing",
missing_value_replacement = -1)]),
])
### attempt 2: assign invalid values a new value
# mapper = DataFrameMapper([
# (categorical_cols, [CategoricalDomain(invalid_value_treatment = "as_value",
# invalid_value_replacement = "OTHER",
# missing_value_replacement = "OTHER"), OneHotEncoder()]),
# (numerical_cols, [ContinuousDomain(invalid_value_treatment = "as_missing",
# missing_value_replacement = -1)]),
# ])
classifier = xgb.XGBClassifier(n_estimators=500,
objective="binary:logistic",
random_state=0,
learning_rate=0.1,
missing=np.nan,
scale_pos_weight=3000,
max_depth=8
)
pipeline = PMMLPipeline([
("mapper", mapper),
("classifier", classifier)
])
pipeline.fit(df[df.columns.difference(["Y"])], df["Y"])
sklearn2pmml(pipeline, "pipeline_test.pmml")
## evaluate
evaluator = make_evaluator("pipeline_test.pmml").verify()
TEST_INPUT_1 = {
"X1": 1,
"X2": "a"
}
TEST_INPUT_2 = {
"X1": 1,
"X2": "d"
}
print(evaluator.evaluate(TEST_INPUT_1))
print(evaluator.evaluate(TEST_INPUT_2))
Evaluation of TEST_INPUT_2 using jpmml_evaluator results in an error
jpmml_evaluator.JavaError: org.jpmml.evaluator.ValueCheckException: Field "X2" cannot accept invalid value "d"
without the invalidValueTreatment tags, but if I manually add invalidValueTreatment="asMissing" for X2 in the PMML file, then evaluation works as expected.
Is there any way to get the PMML output to contain info on how to handle invalid values, or have I missed something about the intended behavior here? Thanks