Skip to content

jefkel/backup-container

 
 

Repository files navigation

License

Backup Container

This is a simple containerized backup solution for backing up one or more postgres databases to a secondary location. Code and documentation was oringinally pulled from the HETS Project

Postgres Backups in OpenShift


This project provides you with a starting point for integrating backups into your OpenShift projects. The scripts and templates provided in the openshift directory are compatible with the openshift-developer-tools scripts. They help you create an OpenShift deployment called backup in your projects that runs backups on a Postgres database(s) within the project environment. You only need to integrate the scripts and templates into your project(s), the builds can be done with this repository as the source.

Following are the instructions for running the backups and a restore.

Deployment / Configuration


Together, the scripts and templates provided in the openshift directory will automatically deploy the backup app as described below. The backup-deploy.overrides.sh script generates the deployment configuration necessary for the backup.conf file to be mounted as a ConfigMap by the backup container.

The following environment variables are defaults used by the backup app.

NOTE: These environment variables MUST MATCH those used by the postgresql container(s) you are planning to backup.

Name Default (if not set) Purpose
BACKUP_STRATEGY daily To control the backup strategy used for backups. This is explained more below.
BACKUP_DIR /backups/ The directory under which backups will be stored. The deployment configuration mounts the persistent volume claim to this location when first deployed.
NUM_BACKUPS 31 For backward compatibility this value is used with the daily backup strategy to set the number of backups to retain before pruning.
DAILY_BACKUPS 6 When using the rolling backup strategy this value is used to determine the number of daily (Mon-Sat) backups to retain before pruning.
WEEKLY_BACKUPS 4 When using the rolling backup strategy this value is used to determine the number of weekly (Sun) backups to retain before pruning.
MONTHLY_BACKUPS 1 When using the rolling backup strategy this value is used to determine the number of monthly (last day of the month) backups to retain before pruning.
BACKUP_PERIOD 1d The schedule on which to run the backups. The value is used by a sleep command and can be defined in d, h, m, or s.
DATABASE_SERVICE_NAME postgresql The name of the service/host for the default database target.
POSTGRESQL_DATABASE my_postgres_db The name of the default database target; the name of the database you want to backup.
POSTGRESQL_USER wired to a secret The username for the database(s) hosted by the postgresql Postgres server. The deployment configuration makes the assumption you have your database credentials stored in secrets (which you should), and the key for the username is database-user. The name of the secret must be provided as the DATABASE_DEPLOYMENT_NAME parameter to the deployment configuration template.
POSTGRESQL_PASSWORD wired to a secret The password for the database(s) hosted by the postgresql Postgres server. The deployment configuration makes the assumption you have your database credentials stored in secrets (which you should), and the key for the username is database-password. The name of the secret must be provided as the DATABASE_DEPLOYMENT_NAME parameter to the deployment configuration template.
FTP_URL The FTP server URL. If not specified, the FTP backup feature is disabled. The default value in the deployment configuration is an empty value - not specified.
FTP_USER wired to a secret The username for the FTP server. The deployment configuration creates a secret with the name specified in the FTP_SECRET_KEY parameter (default: ftp-secret). The key for the username is ftp-user and the value is an empty value by default.
FTP_PASSWORD wired to a secret The password for the FTP server. The deployment configuration creates a secret with the name specified in the FTP_SECRET_KEY parameter (default: ftp-secret). The key for the password is ftp-password and the value is an empty value by default.

Using this default configuration you can easily back up a single postgres database, however you can extend the configuration and use the backup.conf file to list a number of databases for backup.

When using the backup.conf file the following environment variables are ignored, since you list all of your host/database pairs in the file; DATABASE_SERVICE_NAME, POSTGRESQL_DATABASE. To provide the credentials needed for the listed databases you extend the deployment configuration to include hostname_USER and hostname_PASSWORD credential pairs which are wired to the appropriate secrets (where hostname matches the hostname/servicename, in all caps and underscores, of the database). For example, if you are backing up a database named wallet-db/my_wallet, you would have to extend the deployment configuration to include a WALLET_DB_USER and WALLET_DB_PASSWORD credential pair, wired to the appropriate secrets, to access the database(s) on the wallet-db server. You may notice the default configuration is already wired for the host/service name postgresql, so you're already covered if all your databases are on a server of that name.

Multiple Databases

When backing up multiple databases, the retention settings apply to each database individually. For instance if you use the daily strategy and set the retention number(s) to 5, you will retain 5 copies of each database. So plan your backup storage accordingly.

An example of the backup container in action can be found here; example log output

Backup Strategies


The backup app supports two backup strategies, each are explained below. Regardless of the strategy backups are identified using a core name derived from the host/database specification and a timestamp. All backups are compressed using gzip.

Daily

The daily backup strategy is very simple. Backups are created in dated folders under the top level /backups/ folder. When the maximum number of backups (NUM_BACKUPS) is exceeded, the oldest ones are pruned from disk.

For example (faked):

================================================================================================================================
Current Backups:
--------------------------------------------------------------------------------------------------------------------------------
1.0K    2018-10-03 22:16        ./backups/2018-10-03/postgresql-TheOrgBook_Database_2018-10-03_22-16-11.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/postgresql-TheOrgBook_Database_2018-10-03_22-16-28.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/postgresql-TheOrgBook_Database_2018-10-03_22-16-46.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_holder_2018-10-03_22-16-13.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_holder_2018-10-03_22-16-31.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_holder_2018-10-03_22-16-48.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_verifier_2018-10-03_22-16-08.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_verifier_2018-10-03_22-16-25.sql.gz
1.0K    2018-10-03 22:16        ./backups/2018-10-03/wallet-db-tob_verifier_2018-10-03_22-16-43.sql.gz
13K     2018-10-03 22:16        ./backups/2018-10-03
...
61K     2018-10-04 10:43        ./backups/
================================================================================================================================

Rolling

The rolling backup strategy provides a bit more flexibility. It allows you to keep a number of recent daily backups, a number of weekly backups, and a number of monthly backups.

  • Daily backups are any backups done Monday through Saturday.
  • Weekly backups are any backups done at the end of the week, which we're calling Sunday.
  • Monthly backups are any backups done on the last day of a month.

There are retention settings you can set for each. The defaults provide you with a week's worth of daily backups, a month's worth of weekly backups, and a single backup for the previous month.

Although the example does not show any weekly or monthly backups, you can see from the example that the folders are further broken down into the backup type.

For example (faked):

================================================================================================================================
Current Backups:
--------------------------------------------------------------------------------------------------------------------------------
0       2018-10-03 22:16        ./backups/daily/2018-10-03
1.0K    2018-10-04 09:29        ./backups/daily/2018-10-04/postgresql-TheOrgBook_Database_2018-10-04_09-29-52.sql.gz
1.0K    2018-10-04 10:37        ./backups/daily/2018-10-04/postgresql-TheOrgBook_Database_2018-10-04_10-37-15.sql.gz
1.0K    2018-10-04 09:29        ./backups/daily/2018-10-04/wallet-db-tob_holder_2018-10-04_09-29-55.sql.gz
1.0K    2018-10-04 10:37        ./backups/daily/2018-10-04/wallet-db-tob_holder_2018-10-04_10-37-18.sql.gz
1.0K    2018-10-04 09:29        ./backups/daily/2018-10-04/wallet-db-tob_verifier_2018-10-04_09-29-49.sql.gz
1.0K    2018-10-04 10:37        ./backups/daily/2018-10-04/wallet-db-tob_verifier_2018-10-04_10-37-12.sql.gz
22K     2018-10-04 10:43        ./backups/daily/2018-10-04
22K     2018-10-04 10:43        ./backups/daily
4.0K    2018-10-03 22:16        ./backups/monthly/2018-10-03
4.0K    2018-10-03 22:16        ./backups/monthly
4.0K    2018-10-03 22:16        ./backups/weekly/2018-10-03
4.0K    2018-10-03 22:16        ./backups/weekly
61K     2018-10-04 10:43        ./backups/
================================================================================================================================

Using the Backup Script


The backup script has a few utility features built into it. For a full list of features and documentation run backup.sh -h.

Features include:

  • The ability to list the existing backups, backup.sh -l
  • Listing the current configuration, backup.sh -c
  • Running a single backup cycle, backup.sh -1
  • Restoring a database from backup, backup.sh -r <databaseSpec/> [-f <backupFileFilter>]
    • Restore mode will allow you to restore a database to a different location (host, and/or database name) provided it can contact the host and you can provide the appropriate credentials.

Using the FTP backup

Backup


The purpose of the backup app is to do automatic backups. Deploy the Backup app to do daily backups. Viewing the Logs for the Backup App will show a record of backups that have been completed.

The Backup app performs the following sequence of operations:

  1. Create a directory that will be used to store the backup.
  2. Use the pg_dump and gzip commands to make a backup.
  3. Cull backups more than $NUM_BACKUPS (default 31 - configured in deployment script)
  4. Sleep for a day and repeat

Note that we are just using a simple "sleep" to run the backup periodically. More elegant solutions were looked at briefly, but there was not a lot of time or benefit, so OpenShift Scheduled Jobs, cron and so on are not used. With some more effort they likely could be made to work.

A separate pod is used vs. having the backups run from the Postgres Pod for fault tolerant purposes - to keep the backups separate from the database storage. We don't want to, for example, lose the storage of the database, or have the database and backups storage fill up, and lose both the database and the backups.

Immediate Backup:

To execute a single backup cycle:

  • Check the logs of the Backup pod to make sure a backup isn't run right now (pretty unlikely...)
  • Open a terminal window to the pod
  • Run backup.sh -1
    • This will run a single backup cycle and exit.

Restore

The backup.sh script's restore mode makes it very simple to restore the most recent backup of a particular database. It's as simple as running a the following command, for example (run backup.sh -h for full details on additional options);

backup.sh -r postgresql/TheOrgBook_Database

Following are more detailed steps to perform a restore of a backup.

  1. Log into the OpenShift Console and log into OpenShift on the command shell window.
    1. The instructions here use a mix of the console and command line, but all could be done from a command shell using "oc" commands.
  2. Scale to 0 all Apps that use the database connection.
    1. This is necessary as the Apps will need to restart to pull data from the restored backup.
    2. It is recommended that you also scale down to 0 your client application so that users know the application is unavailable while the database restore is underway.
      1. A nice addition to this would be a user-friendly "This application is offline" message - not yet implemented.
  3. Restart the database pod as a quick way of closing any other database connections from users using port forward or that have rsh'd to directly connect to the database.
  4. Open an rsh into the backup pod:
    1. Open a command prompt connection to OpenShift using oc login with parameters appropriate for your OpenShift host.
    2. Change to the OpenShift project containing the Backup App oc project <Project Name>
    3. List pods using oc get pods
    4. Open a remote shell connection to the backup pod. oc rsh <Backup Pod Name>
  5. In the rsh run the backup script in restore mode, ./backup.sh -r <DatabaseSpec/>, to restore the desired backup file. For full information on how to use restore mode, refer to the script documentation, ./backup.sh -h. Have the Admin password for the database handy, the script will ask for it during the restore process.
    1. The restore script will automatically grant the database user access to the restored database. If there are other users needing access to the database, such as the DBA group, you will need to additionally run the following commands on the database pod itself using psql:
      1. Get a list of the users by running the command \du
      2. For each user that is not "postgres" and $POSTGRESQL_USER, execute the command GRANT SELECT ON ALL TABLES IN SCHEMA public TO "<name of user>";
    2. If users have been set up with other grants, set them up as well.
  6. Verify that the database restore worked
    1. On the database pod, query a table - e.g the USER table: SELECT * FROM "SBI_USER"; - you can look at other tables if you want.
    2. Verify the expected data is shown.
  7. Exit remote shells back to your local commmand line
  8. From the Openshift Console restart the app:
    1. Scale up any pods you scaled down and wait for them to finish starting up. View the logs to verify there were no startup issues.
  9. Verify full application functionality.

Done!

Getting Help or Reporting an Issue


To report bugs/issues/feature requests, please file an issue.

How to Contribute


If you would like to contribute, please see our CONTRIBUTING guidelines.

Please note that this project is released with a Contributor Code of Conduct. By participating in this project you agree to abide by its terms.

About

A simple container for a simple backup strategy.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Shell 98.4%
  • Dockerfile 1.6%