Skip to content

Jp/up #26

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Mar 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions .github/workflows/ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -23,12 +23,12 @@ jobs:
arch:
- x64
steps:
- uses: actions/checkout@v2
- uses: julia-actions/setup-julia@v1
- uses: actions/checkout@v4
- uses: julia-actions/setup-julia@v2
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- uses: actions/cache@v1
- uses: actions/cache@v4
env:
cache-name: cache-artifacts
with:
Expand All @@ -41,6 +41,6 @@ jobs:
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1
- uses: julia-actions/julia-processcoverage@v1
- uses: codecov/codecov-action@v1
- uses: codecov/codecov-action@v3
with:
file: lcov.info
26 changes: 13 additions & 13 deletions Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "RadialPiecewisePolynomials"
uuid = "7dab568b-3cf7-4f91-a977-b4631dfca174"
authors = ["john.papad "]
version = "0.1.4"
version = "0.1.5"

[deps]
AnnuliOrthogonalPolynomials = "de1797fd-24c3-4035-91a2-b52aecdcfb01"
Expand All @@ -27,25 +27,25 @@ SpecialFunctions = "276daf66-3868-5448-9aa4-cd146d93841b"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"

[compat]
AnnuliOrthogonalPolynomials = "0.0.6"
BandedMatrices = "0.17, 1"
BlockArrays = "1.1"
AnnuliOrthogonalPolynomials = "0.1.0"
BandedMatrices = "1.9"
BlockArrays = "1.5"
BlockBandedMatrices = "0.13"
ClassicalOrthogonalPolynomials = "0.13"
ContinuumArrays = "0.18"
ClassicalOrthogonalPolynomials = "0.15"
ContinuumArrays = "0.19"
DomainSets = "0.7"
FastTransforms = "0.16"
FastTransforms = "0.17"
FillArrays = "1.5"
HypergeometricFunctions = "0.3"
LazyArrays = "2.1"
LazyArrays = "2.6"
MatrixFactorizations = "3"
Memoization = "0.2"
MultivariateOrthogonalPolynomials = "0.7"
PiecewiseOrthogonalPolynomials = "0.5"
QuasiArrays = "0.11"
SemiclassicalOrthogonalPolynomials = "0.5"
MultivariateOrthogonalPolynomials = "0.9"
PiecewiseOrthogonalPolynomials = "0.5.4"
QuasiArrays = "0.12"
SemiclassicalOrthogonalPolynomials = "0.7"
SpecialFunctions = "2"
StaticArrays = "1.6"
StaticArrays = "1.9"
julia = "1.10"

[extras]
Expand Down
15 changes: 8 additions & 7 deletions src/annuluselement.jl
Original file line number Diff line number Diff line change
Expand Up @@ -147,12 +147,12 @@ function ldiv(C::ContinuousZernikeAnnulusElementMode{T}, f::AbstractQuasiVector)
# Truncate machine error tail
Ñ = findall(x->abs(x) > 2*eps(T), c̃)
c̃ = isempty(Ñ) ? Zeros{T}(3) : c̃[1:Ñ[end]+min(5, length(c̃)-Ñ[end])]
N = length(c̃) # degree
N = min(length(c̃), size(C.R,1)) # degree

R̃ = view(C.R, 1:N, 1:N)

# convert from ZernikeAnnulus(ρ,w_a,w_a) to hats + Bubble
dat = R̃[1:N,1:N] \ c̃
dat = R̃[1:N,1:N] \ c̃[1:N]
cfs = T[]
pad(append!(cfs, dat), axes(C,2))
end
Expand Down Expand Up @@ -193,7 +193,7 @@ function mass_matrix(C::ContinuousZernikeAnnulusElementMode)

m₀ = _mass_m₀(C, m, t)
# TODO fix the excess zeros
return ApplyArray(*,Diagonal(Fill(β^2*m₀,)), ApplyArray(*, C.R', C.R))
return ApplyArray(*,Diagonal(Fill(β^2*m₀,size(C.R,1))), ApplyArray(*, C.R', C.R))
end


Expand All @@ -210,7 +210,7 @@ end
# We need to compute the Jacobi matrix multiplier addition due to the
# variable Helmholtz coefficient λ(r²). We expand λ(r²) in chebyshevt
# and then use Clenshaw to compute λ(β^2*(I-X/t)) where X is the
# correponding Jacobi matrix for this basis.
# corresponding Jacobi matrix for this basis.
Tn = chebyshevt(C.points[1]..C.points[2])
u = Tn \ λ.f.(axes(Tn,1))
X = jacobimatrix(SemiclassicalJacobi(t, 0, 0, m))
Expand All @@ -229,7 +229,8 @@ function assembly_matrix(C::ContinuousZernikeAnnulusElementMode, Λ::AbstractMat
m₀ = _mass_m₀(C, m, t)

# TODO fix the excess zeros
ApplyArray(*,Diagonal(Fill(β^2*m₀,∞)), ApplyArray(*, C.R', ApplyArray(*, Λ, C.R)))
sz = size(C.R)
ApplyArray(*,Diagonal(Fill(β^2*m₀,sz)), ApplyArray(*, C.R', ApplyArray(*, view(Λ,1:sz[1],1:sz[2]), C.R)))
end


Expand Down Expand Up @@ -309,8 +310,8 @@ function stiffness_matrix(C::ContinuousZernikeAnnulusElementMode)
C = [W010(m, ρ) W_100_010(m, ρ) 4*m₀*(m+1); W_100_010(m, ρ) W100(m,ρ) -4*m₀*(m+1)]
end

Δ = [[C[1:2,3]'; Zeros{T}(,2)] Δ]
Vcat(Hcat(C, Zeros{T}(2,)), Δ)
Δ = [[C[1:2,3]'; Zeros{T}(size(Δ,2)-1,2)] Δ]
Vcat(Hcat(C, Zeros{T}(2,size(Δ,2)-3)), Δ)
end

###
Expand Down
20 changes: 10 additions & 10 deletions src/continuouszernike.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,18 +25,18 @@ end

# Matrices for lowering to ZernikeAnnulus(0,0) via
# direct lowering. Less stable, but probably lower complexity.
function _ann2element_via_raising(t::T) where T
function _ann2element_via_raising_N(t::T, N::Int) where T
# {T} did not change the speed.
Q₀₀ = SemiclassicalJacobi{T}.(t, 0, 0, 0:)
Q₀₁ = SemiclassicalJacobi{T}.(t, 0, 1, 0:)
Q₁₀ = SemiclassicalJacobi{T}.(t, 1, 0, 0:)
Q₁₁ = SemiclassicalJacobi{T}.(t, 1, 1, 0:)
Q₀₀ = SemiclassicalJacobi{T}.(t, 0, 0, 0:N)
Q₀₁ = SemiclassicalJacobi{T}.(t, 0, 1, 0:N)
Q₁₀ = SemiclassicalJacobi{T}.(t, 1, 0, 0:N)
Q₁₁ = SemiclassicalJacobi{T}.(t, 1, 1, 0:N)

R₁₁ = (Weighted.(Q₀₀) .\ Weighted.(Q₁₁)) / t^2
R₀₁ = BroadcastVector{AbstractVector}((Q, P) -> (Weighted(Q) \ Weighted(P))[1:2,1] / t, Q₀₀, Q₀₁)
R₁₀ = BroadcastVector{AbstractVector}((Q, P) -> (Weighted(Q) \ Weighted(P))[1:2,1] / t, Q₀₀, Q₁₀)

BroadcastVector{AbstractMatrix}((R11, R01, R10)->Hcat(Vcat(R10, Zeros{T}(∞)), Vcat(R01, Zeros{T}()), R11), R₁₁, R₀₁, R₁₀)
BroadcastVector{AbstractMatrix}((R11, R01, R10)->Hcat(Vcat(R10, Zeros{T}(size(R11,1)+1)), Vcat(R01, Zeros{T}(size(R11,2))), R11), R₁₁, R₀₁, R₁₀)
end

function _getMs_ms_js(N::Int)
Expand Down Expand Up @@ -78,7 +78,7 @@ function _getFs(N::Int, points::AbstractVector{T}) where T
# intervals and Fourier modes simultaneously.


Rs = _ann2element_via_raising.(ts)
Rs = _ann2element_via_raising_N.(ts, N)
cst = [[sum.(SemiclassicalJacobiWeight.(t,a,a,0:ms[end])) for t in ts] for a in 1:-1:0]

# Use broadcast notation to compute all the derivative matrices across
Expand All @@ -104,13 +104,13 @@ function _getFs(N::Int, points::AbstractVector{T}) where T
for (M, m, j) in zip(Ms, ms, js)
# Extract the lowering and differentiation matrices associated
# with each Fourier mode and store in the Tuples
R = NTuple{K+1-κ, AbstractMatrix}([Rs[i][m+1] for i in 1:K+1-κ])
D = NTuple{K+1-κ, AbstractMatrix}([Ds[i][m+1] for i in 1:K+1-κ])
R = NTuple{K+1-κ, BandedMatrix}([BandedMatrix(view(Rs[i][m+1],1:M, 1:M), (1,2)) for i in 1:K+1-κ])
D = NTuple{K+1-κ, Tridiagonal}([Tridiagonal(Ds[i][m+1][1:M, 1:M]) for i in 1:K+1-κ])

normalize_constants = Vector{T}[T[cst[k][i][m+1] for k in 1:lastindex(cst)] for i in 1:K+1-κ]
Cs = Tuple(_getCs(points, m, j, N, R, D, normalize_constants, same_ρs))

# Construct the structs for each Fourier mode seperately
# Construct the structs for each Fourier mode separately
append!(Fs, [ContinuousZernikeMode(M, points, m, j, Cs, normalize_constants, same_ρs, N)])
end
return Fs
Expand Down
4 changes: 2 additions & 2 deletions src/zernikebasis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -156,7 +156,7 @@ function gram_matrix(C::ContinuousZernikeAnnulusElementMode, Ψ::ZernikeBasisMod

if a == 0 && b == 0
m₀ = _mass_m₀(C,m,t)
ApplyArray(*,Diagonal(Fill(β^2*m₀,)), C.R')
ApplyArray(*,Diagonal(Fill(β^2*m₀,size(C.R))), C.R')
else
error("L²-inner product between ContinuousZernikeAnnulusElementMode and ZernikeBasisModeElement not implemented for parameters Ψ.a = $a and Ψ.b = $b")
end
Expand All @@ -176,7 +176,7 @@ function gram_matrix(C::ContinuousZernikeElementMode, Ψ::ZernikeBasisModeElemen

if a == 0 && b == 0
R = Zernike(0) \ Weighted(Zernike(1))
Vcat(Hcat(β^2, Zeros{T}(1,)), β^2*R.ops[m+1]')
Vcat(Hcat(β^2, Zeros{T}(1,size(R.ops[m+1],2))), β^2*R.ops[m+1]')
else
error("L²-inner product between ContinuousZernikeElementMode and ZernikeBasisModeElement not implemented for parameters Ψ.a = $a and Ψ.b = $b")
end
Expand Down
Loading