Skip to content

feat: add similarity search with distance score #125

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 4 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 22 additions & 0 deletions src/langchain_google_firestore/vectorstores.py
Original file line number Diff line number Diff line change
Expand Up @@ -240,6 +240,7 @@ def _similarity_search(
query: List[float],
k: int = DEFAULT_TOP_K,
filters: Optional[BaseFilter] = None,
distance_result_field: Optional[str] = None,
) -> List[DocumentSnapshot]:
_filters = filters or self.filters

Expand All @@ -253,6 +254,7 @@ def _similarity_search(
query_vector=Vector(query),
distance_measure=self.distance_strategy,
limit=k,
distance_result_field=distance_result_field,
)

return results.get()
Expand Down Expand Up @@ -413,6 +415,26 @@ def max_marginal_relevance_search_by_vector(
)
return [convert_firestore_document(doc_results[i]) for i in mmr_doc_indexes]

def similarity_search_with_score(
self, query, k=4, filters: Optional[BaseFilter] = None, **kwargs
):
distance_result_field = kwargs.pop("distance_result_field", None) or "distance"
docs = self._similarity_search(
self.embedding_service.embed_query(query),
k,
filters=filters,
distance_result_field=distance_result_field,
)
return [
(
convert_firestore_document(
doc, page_content_fields=[self.content_field]
),
doc.to_dict()[distance_result_field],
)
for doc in docs
]

@classmethod
def from_texts(
cls: Type[FirestoreVectorStore],
Expand Down
96 changes: 96 additions & 0 deletions tests/test_vectorstores.py
Original file line number Diff line number Diff line change
Expand Up @@ -495,6 +495,102 @@ def test_firestore_max_marginal_relevance_by_vector(
test_case.assertEqual(len(results), k)


def test_firestore_similarity_search_with_score(
test_case: TestCase,
test_collection: str,
client,
embeddings: FakeEmbeddings,
):
"""
An end-to-end test for similarity search with score in FirestoreVectorStore.
"""

# Create FirestoreVectorStore instance
firestore_store = FirestoreVectorStore(test_collection, embeddings, client=client)

texts = ["test1", "test2"]
k = 2

# Add vectors to Firestore
firestore_store.add_texts(texts, ids=["1", "2"])

# Perform similarity search with score
results = firestore_store.similarity_search_with_score("test1", k)

# Verify that the search results are as expected
test_case.assertEqual(len(results), k)

# Check that each result is a tuple with a Document and a score
for result in results:
test_case.assertTrue(isinstance(result, tuple))
test_case.assertEqual(len(result), 2)
test_case.assertTrue(isinstance(result[0], Document))
test_case.assertTrue(isinstance(result[1], float))


def test_firestore_similarity_search_with_score_with_filters(
test_case: TestCase,
test_collection: str,
client: firestore.Client,
embeddings: FakeEmbeddings,
):
"""
An end-to-end test for similarity search with score in FirestoreVectorStore with filters.
Requires an index on the filter field in Firestore.
"""

# Create FirestoreVectorStore instance
firestore_store = FirestoreVectorStore(test_collection, embeddings, client=client)

# Add vectors to Firestore
firestore_store.add_texts(
["test1", "test2"],
ids=["1", "2"],
metadatas=[{"foo": "bar"}, {"foo": "baz"}],
)

# Perform similarity search with score and filter
results = firestore_store.similarity_search_with_score(
"test1", k=2, filters=FieldFilter("metadata.foo", "==", "bar")
)

# Verify that the search results are as expected with the filter applied
test_case.assertEqual(len(results), 1)

# Check that the result is a tuple with a Document and a score
doc, score = results[0]
test_case.assertTrue(isinstance(doc, Document))
test_case.assertTrue(isinstance(score, float))
test_case.assertEqual(doc.page_content, "test1")
test_case.assertEqual(doc.metadata["metadata"]["foo"], "bar")


def test_firestore_similarity_search_with_score_custom_distance_field(
test_case: TestCase,
test_collection: str,
client: firestore.Client,
embeddings: FakeEmbeddings,
):
"""
Tests similarity_search_with_score with a custom distance_result_field.
"""
firestore_store = FirestoreVectorStore(test_collection, embeddings, client=client)
texts = ["test_doc_alpha", "test_doc_beta"]
firestore_store.add_texts(texts, ids=["alpha_id", "beta_id"])

custom_field_name = "my_custom_distance"
k_val = 1

results = firestore_store.similarity_search_with_score(
"test_doc_alpha", k=k_val, distance_result_field=custom_field_name
)

test_case.assertEqual(len(results), k_val)
for doc, score in results:
test_case.assertTrue(isinstance(doc, Document))
test_case.assertTrue(isinstance(score, float))


def test_firestore_from_texts(
test_case: TestCase,
test_collection: str,
Expand Down