Skip to content

SEACells algorithm for Inference of transcriptional and epigenomic cellular states from single-cell genomics data

License

Notifications You must be signed in to change notification settings

dpeerlab/SEACells

Folders and files

NameName
Last commit message
Last commit date

Latest commit

a0a00d7 · Mar 27, 2025
Oct 23, 2023
Mar 27, 2025
Jun 1, 2023
Jun 1, 2023
Feb 8, 2022
Jun 1, 2023
Jun 1, 2023
Jun 1, 2023
Jun 1, 2023
Mar 27, 2025
Jun 1, 2023

Repository files navigation

SEACells:

Single-cEll Aggregation for High Resolution Cell States

Installation and dependencies

  1. SEACells has been implemented in Python3.8 can be installed via pip: > p i p i n s t a l l c m a k e > pip install SEACells It can also be installed directly from source.

    $> git clone https://github.com/dpeerlab/SEACells.git
    $> cd SEACells
    $> python setup.py install
    
  2. If you are using conda, you can use the environment.yaml to create a new environment and install SEACells.

conda env create -n seacells --file environment.yaml
conda activate seacells
  1. You can also use pip to install the requirements
pip install -r requirements.txt

And then follow step (1)

  1. MulticoreTSNE issues can be solved using
conda create --name seacells -c conda-forge -c bioconda cython python=3.8
conda activate seacells
pip install git+https://github.com/settylab/Palantir@removeTSNE
git clone https://github.com/dpeerlab/SEACells.git
cd SEACells
python setup.py install
  1. SEACells depends on a number of python3 packages available on pypi and these dependencies are listed in setup.py.

    All the dependencies will be automatically installed using the above commands

  2. To uninstall: $> pip uninstall SEACells

  3. To install the developer installation of SEACells, run

git clone https://github.com/dpeerlab/SEACells.git
cd SEACells.git

pip install -e ".[dev]"
pre-commit install

Usage

  1. ATAC preprocessing: notebooks/ArchR folder contains the preprocessing scripts and notebooks including peak calling using NFR fragments. See notebook here to get started. A version of ArchR that supports NFR peak calling is available here.

  2. Computing SEACells: A tutorial on SEACells usage and results visualization for single cell data can be found in the [SEACell computation notebook] (https://github.com/dpeerlab/SEACells/blob/main/notebooks/SEACell_computation.ipynb).

  3. Gene regulatory toolkit: Peak gene correlations, gene scores and gene accessibility scores can be computed using the [ATAC analysis notebook] (https://github.com/dpeerlab/SEACells/blob/main/notebooks/SEACell_ATAC_analysis.ipynb).

  4. TF activity inference: TF activities along differenitation trajectories can be computed using the [TF activity notebook] (https://github.com/dpeerlab/SEACells/blob/main/notebooks/SEACell_tf_activity.ipynb).

  5. Large-scale data integration using SEACells : Details are avaiable in the [COVID integration notebook] (https://github.com/dpeerlab/SEACells/blob/main/notebooks/SEACell_COVID_integration.ipynb)

  6. Cross-modality integration : Integration between scRNA and scATAC can be performed following the Integration notebook

Citations

SEACells manuscript is available on bioRxiv. If you use SEACells for your work, please cite our paper.

@article {Persad2022.04.02.486748,
	author = {Persad, Sitara and Choo, Zi-Ning and Dien, Christine and Masilionis, Ignas and Chalign{\'e}, Ronan and Nawy, Tal and Brown, Chrysothemis C and Pe{\textquoteright}er, Itsik and Setty, Manu and Pe{\textquoteright}er, Dana},
	title = {SEACells: Inference of transcriptional and epigenomic cellular states from single-cell genomics data},
	elocation-id = {2022.04.02.486748},
	year = {2022},
	doi = {10.1101/2022.04.02.486748},
	publisher = {Cold Spring Harbor Laboratory},
	URL = {https://www.biorxiv.org/content/early/2022/04/03/2022.04.02.486748},
	eprint = {https://www.biorxiv.org/content/early/2022/04/03/2022.04.02.486748.full.pdf},
	journal = {bioRxiv}
}


Release Notes

About

SEACells algorithm for Inference of transcriptional and epigenomic cellular states from single-cell genomics data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published