-
Notifications
You must be signed in to change notification settings - Fork 556
Feat: Refactor dipole fitting pytorch #3281
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from 5 commits
Commits
Show all changes
19 commits
Select commit
Hold shift + click to select a range
4b66a9b
feat: refactor dipole fitting
anyangml f47f9ef
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 95916e9
Merge branch 'devel' into devel
anyangml 151c231
add numpy fitting refactor
anyangml 1beee90
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] fb89885
feat: add numpy dipole fitting
anyangml 70359f9
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] d6a0bee
Merge branch 'devel' into devel
anyangml e90e408
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 6a53772
fix: merge conflict
anyangml d4fa19a
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] c8d3cc4
fix: merge conflict
anyangml 03c3aee
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 7592c75
feat: add UTs
anyangml 18b0017
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] 04bce53
feat: add UTs
anyangml d223bad
chore: refactor
anyangml b733c57
[pre-commit.ci] auto fixes from pre-commit.com hooks
pre-commit-ci[bot] b5f2582
chore: refactor
anyangml File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,317 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import copy | ||
from abc import ( | ||
abstractmethod, | ||
) | ||
from typing import ( | ||
Any, | ||
Dict, | ||
List, | ||
Optional, | ||
) | ||
|
||
import numpy as np | ||
|
||
from deepmd.dpmodel import ( | ||
DEFAULT_PRECISION, | ||
NativeOP, | ||
) | ||
from deepmd.dpmodel.output_def import ( | ||
FittingOutputDef, | ||
OutputVariableDef, | ||
) | ||
from deepmd.dpmodel.utils import ( | ||
FittingNet, | ||
NetworkCollection, | ||
) | ||
|
||
from .base_fitting import ( | ||
BaseFitting, | ||
) | ||
|
||
|
||
class GeneralFitting(NativeOP, BaseFitting): | ||
"""General fitting class. | ||
|
||
Parameters | ||
---------- | ||
var_name | ||
The name of the output variable. | ||
ntypes | ||
The number of atom types. | ||
dim_descrpt | ||
The dimension of the input descriptor. | ||
dim_out | ||
The dimension of the output fit property. | ||
neuron | ||
Number of neurons :math:`N` in each hidden layer of the fitting net | ||
resnet_dt | ||
Time-step `dt` in the resnet construction: | ||
:math:`y = x + dt * \phi (Wx + b)` | ||
numb_fparam | ||
Number of frame parameter | ||
numb_aparam | ||
Number of atomic parameter | ||
rcond | ||
The condition number for the regression of atomic energy. | ||
tot_ener_zero | ||
Force the total energy to zero. Useful for the charge fitting. | ||
trainable | ||
If the weights of fitting net are trainable. | ||
Suppose that we have :math:`N_l` hidden layers in the fitting net, | ||
this list is of length :math:`N_l + 1`, specifying if the hidden layers and the output layer are trainable. | ||
atom_ener | ||
Specifying atomic energy contribution in vacuum. The `set_davg_zero` key in the descrptor should be set. | ||
activation_function | ||
The activation function :math:`\boldsymbol{\phi}` in the embedding net. Supported options are |ACTIVATION_FN| | ||
precision | ||
The precision of the embedding net parameters. Supported options are |PRECISION| | ||
layer_name : list[Optional[str]], optional | ||
The name of the each layer. If two layers, either in the same fitting or different fittings, | ||
have the same name, they will share the same neural network parameters. | ||
use_aparam_as_mask: bool, optional | ||
If True, the atomic parameters will be used as a mask that determines the atom is real/virtual. | ||
And the aparam will not be used as the atomic parameters for embedding. | ||
distinguish_types | ||
Different atomic types uses different fitting net. | ||
|
||
""" | ||
|
||
def __init__( | ||
self, | ||
var_name: str, | ||
ntypes: int, | ||
dim_descrpt: int, | ||
dim_out: int, | ||
neuron: List[int] = [120, 120, 120], | ||
resnet_dt: bool = True, | ||
numb_fparam: int = 0, | ||
numb_aparam: int = 0, | ||
rcond: Optional[float] = None, | ||
tot_ener_zero: bool = False, | ||
trainable: Optional[List[bool]] = None, | ||
atom_ener: Optional[List[float]] = None, | ||
activation_function: str = "tanh", | ||
precision: str = DEFAULT_PRECISION, | ||
layer_name: Optional[List[Optional[str]]] = None, | ||
use_aparam_as_mask: bool = False, | ||
spin: Any = None, | ||
distinguish_types: bool = False, | ||
): | ||
self.var_name = var_name | ||
self.ntypes = ntypes | ||
self.dim_descrpt = dim_descrpt | ||
self.dim_out = dim_out | ||
self.neuron = neuron | ||
self.resnet_dt = resnet_dt | ||
self.numb_fparam = numb_fparam | ||
self.numb_aparam = numb_aparam | ||
self.rcond = rcond | ||
self.tot_ener_zero = tot_ener_zero | ||
self.trainable = trainable | ||
self.atom_ener = atom_ener | ||
self.activation_function = activation_function | ||
self.precision = precision | ||
self.layer_name = layer_name | ||
self.use_aparam_as_mask = use_aparam_as_mask | ||
self.spin = spin | ||
self.distinguish_types = distinguish_types | ||
if self.spin is not None: | ||
raise NotImplementedError("spin is not supported") | ||
|
||
net_dim_out = self._net_out_dim() | ||
# init constants | ||
self.bias_atom_e = np.zeros([self.ntypes, net_dim_out]) | ||
if self.numb_fparam > 0: | ||
self.fparam_avg = np.zeros(self.numb_fparam) | ||
self.fparam_inv_std = np.ones(self.numb_fparam) | ||
else: | ||
self.fparam_avg, self.fparam_inv_std = None, None | ||
if self.numb_aparam > 0: | ||
self.aparam_avg = np.zeros(self.numb_aparam) | ||
self.aparam_inv_std = np.ones(self.numb_aparam) | ||
else: | ||
self.aparam_avg, self.aparam_inv_std = None, None | ||
# init networks | ||
in_dim = self.dim_descrpt + self.numb_fparam + self.numb_aparam | ||
self.nets = NetworkCollection( | ||
1 if self.distinguish_types else 0, | ||
self.ntypes, | ||
network_type="fitting_network", | ||
networks=[ | ||
FittingNet( | ||
in_dim, | ||
net_dim_out, | ||
self.neuron, | ||
self.activation_function, | ||
self.resnet_dt, | ||
self.precision, | ||
bias_out=True, | ||
) | ||
for ii in range(self.ntypes if self.distinguish_types else 1) | ||
], | ||
) | ||
|
||
def output_def(self): | ||
return FittingOutputDef( | ||
[ | ||
OutputVariableDef( | ||
self.var_name, | ||
[self.dim_out], | ||
reduciable=True, | ||
r_differentiable=True, | ||
c_differentiable=True, | ||
), | ||
] | ||
) | ||
|
||
@abstractmethod | ||
def _net_out_dim(self): | ||
"""Set the FittingNet output dim.""" | ||
pass | ||
|
||
def get_dim_fparam(self) -> int: | ||
"""Get the number (dimension) of frame parameters of this atomic model.""" | ||
return self.numb_fparam | ||
|
||
def get_dim_aparam(self) -> int: | ||
"""Get the number (dimension) of atomic parameters of this atomic model.""" | ||
return self.numb_aparam | ||
|
||
def get_sel_type(self) -> List[int]: | ||
"""Get the selected atom types of this model. | ||
|
||
Only atoms with selected atom types have atomic contribution | ||
to the result of the model. | ||
If returning an empty list, all atom types are selected. | ||
""" | ||
return [] | ||
|
||
def serialize(self) -> dict: | ||
"""Serialize the fitting to dict.""" | ||
return { | ||
"var_name": self.var_name, | ||
"ntypes": self.ntypes, | ||
"dim_descrpt": self.dim_descrpt, | ||
"dim_out": self.dim_out, | ||
"neuron": self.neuron, | ||
"resnet_dt": self.resnet_dt, | ||
"numb_fparam": self.numb_fparam, | ||
"numb_aparam": self.numb_aparam, | ||
"rcond": self.rcond, | ||
"activation_function": self.activation_function, | ||
"precision": self.precision, | ||
"distinguish_types": self.distinguish_types, | ||
"nets": self.nets.serialize(), | ||
"@variables": { | ||
"bias_atom_e": self.bias_atom_e, | ||
"fparam_avg": self.fparam_avg, | ||
"fparam_inv_std": self.fparam_inv_std, | ||
"aparam_avg": self.aparam_avg, | ||
"aparam_inv_std": self.aparam_inv_std, | ||
}, | ||
# not supported | ||
"tot_ener_zero": self.tot_ener_zero, | ||
"trainable": self.trainable, | ||
"atom_ener": self.atom_ener, | ||
"layer_name": self.layer_name, | ||
"use_aparam_as_mask": self.use_aparam_as_mask, | ||
"spin": self.spin, | ||
} | ||
|
||
@classmethod | ||
def deserialize(cls, data: dict) -> "GeneralFitting": | ||
data = copy.deepcopy(data) | ||
variables = data.pop("@variables") | ||
nets = data.pop("nets") | ||
obj = cls(**data) | ||
for kk in variables.keys(): | ||
obj[kk] = variables[kk] | ||
obj.nets = NetworkCollection.deserialize(nets) | ||
return obj | ||
|
||
def _call_common( | ||
self, | ||
descriptor: np.array, | ||
atype: np.array, | ||
gr: Optional[np.array] = None, | ||
g2: Optional[np.array] = None, | ||
h2: Optional[np.array] = None, | ||
fparam: Optional[np.array] = None, | ||
aparam: Optional[np.array] = None, | ||
) -> Dict[str, np.array]: | ||
anyangml marked this conversation as resolved.
Show resolved
Hide resolved
|
||
"""Calculate the fitting. | ||
|
||
Parameters | ||
---------- | ||
descriptor | ||
input descriptor. shape: nf x nloc x nd | ||
atype | ||
the atom type. shape: nf x nloc | ||
gr | ||
The rotationally equivariant and permutationally invariant single particle | ||
representation. shape: nf x nloc x ng x 3 | ||
g2 | ||
The rotationally invariant pair-partical representation. | ||
shape: nf x nloc x nnei x ng | ||
h2 | ||
The rotationally equivariant pair-partical representation. | ||
shape: nf x nloc x nnei x 3 | ||
fparam | ||
The frame parameter. shape: nf x nfp. nfp being `numb_fparam` | ||
aparam | ||
The atomic parameter. shape: nf x nloc x nap. nap being `numb_aparam` | ||
|
||
""" | ||
nf, nloc, nd = descriptor.shape | ||
net_dim_out = self._net_out_dim() | ||
# check input dim | ||
if nd != self.dim_descrpt: | ||
raise ValueError( | ||
"get an input descriptor of dim {nd}," | ||
"which is not consistent with {self.dim_descrpt}." | ||
) | ||
xx = descriptor | ||
# check fparam dim, concate to input descriptor | ||
if self.numb_fparam > 0: | ||
assert fparam is not None, "fparam should not be None" | ||
if fparam.shape[-1] != self.numb_fparam: | ||
raise ValueError( | ||
"get an input fparam of dim {fparam.shape[-1]}, ", | ||
"which is not consistent with {self.numb_fparam}.", | ||
) | ||
fparam = (fparam - self.fparam_avg) * self.fparam_inv_std | ||
fparam = np.tile(fparam.reshape([nf, 1, self.numb_fparam]), [1, nloc, 1]) | ||
xx = np.concatenate( | ||
[xx, fparam], | ||
axis=-1, | ||
) | ||
# check aparam dim, concate to input descriptor | ||
if self.numb_aparam > 0: | ||
assert aparam is not None, "aparam should not be None" | ||
if aparam.shape[-1] != self.numb_aparam: | ||
raise ValueError( | ||
"get an input aparam of dim {aparam.shape[-1]}, ", | ||
"which is not consistent with {self.numb_aparam}.", | ||
) | ||
aparam = aparam.reshape([nf, nloc, self.numb_aparam]) | ||
aparam = (aparam - self.aparam_avg) * self.aparam_inv_std | ||
xx = np.concatenate( | ||
[xx, aparam], | ||
axis=-1, | ||
) | ||
|
||
# calcualte the prediction | ||
if self.distinguish_types: | ||
outs = np.zeros([nf, nloc, net_dim_out]) | ||
for type_i in range(self.ntypes): | ||
mask = np.tile( | ||
(atype == type_i).reshape([nf, nloc, 1]), [1, 1, net_dim_out] | ||
) | ||
atom_energy = self.nets[(type_i,)](xx) | ||
atom_energy = atom_energy + self.bias_atom_e[type_i] | ||
atom_energy = atom_energy * mask | ||
outs = outs + atom_energy # Shape is [nframes, natoms[0], 1] | ||
else: | ||
outs = self.nets[()](xx) + self.bias_atom_e[atype] | ||
return {self.var_name: outs} |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Check warning
Code scanning / CodeQL
`__init__` method calls overridden method