Skip to content

fix: pt: energy model forward lower is not tested and has bugs. #3235

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions deepmd/pt/model/model/ener.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def forward(
model_predict["atom_virial"] = model_ret["energy_derv_c"].squeeze(
-3
)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-3)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-2)
else:
model_predict["force"] = model_ret["dforce"]
else:
Expand All @@ -64,7 +64,7 @@ def forward_lower(
mapping: Optional[torch.Tensor] = None,
do_atomic_virial: bool = False,
):
model_ret = self.common_forward_lower(
model_ret = self.forward_common_lower(
extended_coord,
extended_atype,
nlist,
Expand All @@ -77,10 +77,11 @@ def forward_lower(
model_predict["energy"] = model_ret["energy_redu"]
if self.do_grad("energy"):
model_predict["extended_force"] = model_ret["energy_derv_r"].squeeze(-2)
model_predict["virial"] = model_ret["energy_derv_c_redu"].squeeze(-2)
if do_atomic_virial:
model_predict["extended_virial"] = model_ret[
"energy_derv_c"
].squeeze(-3)
].squeeze(-2)
else:
assert model_ret["dforce"] is not None
model_predict["dforce"] = model_ret["dforce"]
Expand Down
143 changes: 143 additions & 0 deletions source/tests/pt/test_dp_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
)
from deepmd.pt.model.model.ener import (
DPModel,
EnergyModel,
)
from deepmd.pt.model.task.ener import (
InvarFitting,
Expand Down Expand Up @@ -386,3 +387,145 @@ def test_nlist_lt(self):
to_torch_tensor(nlist),
)
np.testing.assert_allclose(self.expected_nlist, to_numpy_array(nlist1))


class TestEnergyModel(unittest.TestCase, TestCaseSingleFrameWithoutNlist):
def setUp(self):
TestCaseSingleFrameWithoutNlist.setUp(self)

def test_self_consistency(self):
nf, nloc = self.atype.shape

Check notice

Code scanning / CodeQL

Unused local variable

Variable nf is not used.

Check notice

Code scanning / CodeQL

Unused local variable

Variable nloc is not used.
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
).to(env.DEVICE)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
distinguish_types=ds.distinguish_types(),
).to(env.DEVICE)
type_map = ["foo", "bar"]
# TODO: dirty hack to avoid data stat!!!
md0 = EnergyModel(ds, ft, type_map=type_map, resuming=True).to(env.DEVICE)
md1 = EnergyModel.deserialize(md0.serialize()).to(env.DEVICE)
args = [to_torch_tensor(ii) for ii in [self.coord, self.atype, self.cell]]
ret0 = md0.forward(*args)
ret1 = md1.forward(*args)
np.testing.assert_allclose(
to_numpy_array(ret0["atom_energy"]),
to_numpy_array(ret1["atom_energy"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["energy"]),
to_numpy_array(ret1["energy"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["force"]),
to_numpy_array(ret1["force"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["virial"]),
to_numpy_array(ret1["virial"]),
)
ret0 = md0.forward(*args, do_atomic_virial=True)
ret1 = md1.forward(*args, do_atomic_virial=True)
np.testing.assert_allclose(
to_numpy_array(ret0["atom_virial"]),
to_numpy_array(ret1["atom_virial"]),
)

coord_ext, atype_ext, mapping = extend_coord_with_ghosts(
to_torch_tensor(self.coord),
to_torch_tensor(self.atype),
to_torch_tensor(self.cell),
self.rcut,
)
nlist = build_neighbor_list(
coord_ext,
atype_ext,
self.nloc,
self.rcut,
self.sel,
distinguish_types=md0.distinguish_types(),
)
args = [coord_ext, atype_ext, nlist]
ret2 = md0.forward_lower(*args, do_atomic_virial=True)
# check the consistency between the reduced virial from
# forward and forward_lower
np.testing.assert_allclose(
to_numpy_array(ret0["virial"]),
to_numpy_array(ret2["virial"]),
)


class TestEnergyModelLower(unittest.TestCase, TestCaseSingleFrameWithNlist):
def setUp(self):
TestCaseSingleFrameWithNlist.setUp(self)

def test_self_consistency(self):
nf, nloc, nnei = self.nlist.shape

Check notice

Code scanning / CodeQL

Unused local variable

Variable nf is not used.

Check notice

Code scanning / CodeQL

Unused local variable

Variable nloc is not used.

Check notice

Code scanning / CodeQL

Unused local variable

Variable nnei is not used.
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
).to(env.DEVICE)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
distinguish_types=ds.distinguish_types(),
).to(env.DEVICE)
type_map = ["foo", "bar"]
# TODO: dirty hack to avoid data stat!!!
md0 = EnergyModel(ds, ft, type_map=type_map, resuming=True).to(env.DEVICE)
md1 = EnergyModel.deserialize(md0.serialize()).to(env.DEVICE)
args = [
to_torch_tensor(ii) for ii in [self.coord_ext, self.atype_ext, self.nlist]
]
ret0 = md0.forward_lower(*args)
ret1 = md1.forward_lower(*args)
np.testing.assert_allclose(
to_numpy_array(ret0["atom_energy"]),
to_numpy_array(ret1["atom_energy"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["energy"]),
to_numpy_array(ret1["energy"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["extended_force"]),
to_numpy_array(ret1["extended_force"]),
)
np.testing.assert_allclose(
to_numpy_array(ret0["virial"]),
to_numpy_array(ret1["virial"]),
)
ret0 = md0.forward_lower(*args, do_atomic_virial=True)
ret1 = md1.forward_lower(*args, do_atomic_virial=True)
np.testing.assert_allclose(
to_numpy_array(ret0["extended_virial"]),
to_numpy_array(ret1["extended_virial"]),
)

def test_jit(self):
nf, nloc, nnei = self.nlist.shape

Check notice

Code scanning / CodeQL

Unused local variable

Variable nf is not used.

Check notice

Code scanning / CodeQL

Unused local variable

Variable nloc is not used.

Check notice

Code scanning / CodeQL

Unused local variable

Variable nnei is not used.
ds = DescrptSeA(
self.rcut,
self.rcut_smth,
self.sel,
).to(env.DEVICE)
ft = InvarFitting(
"energy",
self.nt,
ds.get_dim_out(),
1,
distinguish_types=ds.distinguish_types(),
).to(env.DEVICE)
type_map = ["foo", "bar"]
# TODO: dirty hack to avoid data stat!!!
md0 = EnergyModel(ds, ft, type_map=type_map, resuming=True).to(env.DEVICE)
torch.jit.script(md0)