Skip to content

[rank5]: TypeError: SortOp.forward() takes from 2 to 3 positional arguments but 5 were given When running moe script #164

Open
@rtmadduri

Description

@rtmadduri
[rank5]: Traceback (most recent call last):
[rank5]:   File "/root/Stanford-Megatron-LM/pretrain_gpt.py", line 154, in <module>
[rank5]:     pretrain(train_valid_test_datasets_provider, model_provider,
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/training.py", line 147, in pretrain
[rank5]:     iteration = train(forward_step_func,
[rank5]:                 ^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/training.py", line 712, in train
[rank5]:     train_step(forward_step_func,
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/training.py", line 421, in train_step
[rank5]:     losses_reduced = forward_backward_func(
[rank5]:                      ^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/schedules.py", line 263, in forward_backward_no_pipelining
[rank5]:     output_tensor = forward_step(forward_step_func, data_iterator,
[rank5]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/schedules.py", line 133, in forward_step
[rank5]:     output_tensor, loss_func = forward_step_func(data_iterator, model)
[rank5]:                                ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/pretrain_gpt.py", line 124, in forward_step
[rank5]:     output_tensor = model(tokens, position_ids, attention_mask,
[rank5]:                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/distributed.py", line 59, in forward
[rank5]:     return self.module(*inputs, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/module.py", line 184, in forward
[rank5]:     outputs = self.module(*inputs, **kwargs)
[rank5]:               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/gpt_model.py", line 80, in forward
[rank5]:     lm_output = self.language_model(
[rank5]:                 ^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/language_model.py", line 432, in forward
[rank5]:     encoder_output = self.encoder(
[rank5]:                      ^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 1227, in forward
[rank5]:     hidden_states = layer(
[rank5]:                     ^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 800, in forward
[rank5]:     mlp_output, mlp_bias = self.mlp(layernorm_output)
[rank5]:                            ^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/root/Stanford-Megatron-LM/megatron/model/transformer.py", line 202, in forward
[rank5]:     return self.moe.forward(x)
[rank5]:            ^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 468, in forward
[rank5]:     out = self.experts(x, scores, expert_weights, top_experts)
[rank5]:           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
[rank5]:     return self._call_impl(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
[rank5]:     return forward_call(*args, **kwargs)
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 429, in forward
[rank5]:     x, tokens_per_expert = self.forward_fn(x, expert_weights, top_experts)
[rank5]:                            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 262, in parallel_forward_once
[rank5]:     indices, bin_ids, bins, tokens_per_expert = (self.indices_and_bins(top_experts))
[rank5]:                                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/layers/moe.py", line 161, in indices_and_bins
[rank5]:     output = ops.sort(top_expert, self.sort_end_bit)
[rank5]:              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 574, in apply
[rank5]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/megablocks/ops/sort.py", line 34, in forward
[rank5]:     ops.sort(x, end_bit, x_out, iota_out)
[rank5]:   File "/opt/conda/envs/py_3.12/lib/python3.12/site-packages/torch/autograd/function.py", line 574, in apply
[rank5]:     return super().apply(*args, **kwargs)  # type: ignore[misc]
[rank5]:            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
[rank5]: TypeError: SortOp.forward() takes from 2 to 3 positional arguments but 5 were given

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions