Skip to content
This repository was archived by the owner on Oct 9, 2021. It is now read-only.
/ ppo_D Public archive

This is the official repository for the paper "Guided Exploration with Proximal Policy Optimization using a Single Demonstration", https://arxiv.org/abs/2007.03328

License

Notifications You must be signed in to change notification settings

compsciencelab/ppo_D

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MOVED

We have implemented PPO+D into PytorchRL https://github.com/PyTorchRL/pytorchrl where is mantained.

Deprected README

This reposotory is no longer used.

Implementation of the paper "Guided Exploration with Proximal PolicyOptimization using a Single Demonstration" https://arxiv.org/pdf/2007.03328.pdf

Create new conda environment with requirements.txt

cd ppo_D

mkdir RUNS

Test run for sparse lunar lander

python train_ppo_bullet.py --seed 16 --device 'cuda:0' --use-gae --lr 2e-4 --clip-param 0.2 --value-loss-coef 0.3 --num-processes 12 --num-steps 2048 --num-mini-batch 32 --entropy-coef 0.02 --num-env-steps 60000000 --log-dir ../RUNS/exp_lunar_lander_1 --frame-stack 1 --cnn MLP --gamma 0.99 --save-interval 50 --gae-lambda 0.95 --ppo-epoch 10 --state-stack 16 --rho 0.1 --phi 0.0 --size-buffer 50 --size-buffer-V 0 --demo-dir ../datasets/sparse_lunar_lander/recordings/ --threshold-reward 0.0 --task 'SparseLunarLander-v1'

Test run for sparse reacher python train_ppo_bullet.py --seed 42 --device 'cuda:0' --use-gae --lr 2e-4 --clip-param 0.2 --value-loss-coef 0.3 --num-processes 64 --num-steps 2048 --num-mini-batch 32 --entropy-coef 0.02 --num-env-steps 500000000 --log-dir ../RUNS/exp_reacher_1 --frame-stack 1 --cnn MLP --gamma 0.99 --save-interval 50 --gae-lambda 0.95 --ppo-epoch 10 --state-stack 16 --rho 0.3 --phi 0.0 --size-buffer 40 --size-buffer-V 0 --demo-dir ../datasets/sparse_reacher/recorded_reacher_threshold_1_10 --threshold-reward 0.001 --task 'SparseReacher-v1'

GitHub Logo GitHub Logo

About

This is the official repository for the paper "Guided Exploration with Proximal Policy Optimization using a Single Demonstration", https://arxiv.org/abs/2007.03328

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published