Skip to content

math: adds polynomials and Lagrange polynomials. #357

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 9, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions group/group.go
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,8 @@ type Scalar interface {
Set(x Scalar) Scalar
// Copy returns a new scalar equal to the receiver.
Copy() Scalar
// IsZero returns true if the receiver is equal to zero.
IsZero() bool
// IsEqual returns true if the receiver is equal to x.
IsEqual(x Scalar) bool
// SetUint64 set the receiver to x, and returns the receiver.
Expand Down
3 changes: 2 additions & 1 deletion group/group_test.go
Original file line number Diff line number Diff line change
Expand Up @@ -314,7 +314,8 @@ func testScalar(t *testing.T, testTimes int, g group.Group) {

c.Inv(a)
c.Mul(c, a)
if !one.IsEqual(c) {
c.Sub(c, one)
if !c.IsZero() {
test.ReportError(t, c, one, a)
}
}
Expand Down
5 changes: 3 additions & 2 deletions group/ristretto255.go
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ import (

r255 "github.com/bwesterb/go-ristretto"
"github.com/cloudflare/circl/expander"
"github.com/cloudflare/circl/internal/conv"
)

// Ristretto255 is a quotient group generated from the edwards25519 curve.
Expand Down Expand Up @@ -203,9 +204,9 @@ func (e *ristrettoElement) UnmarshalBinary(data []byte) error {
}

func (s *ristrettoScalar) Group() Group { return Ristretto255 }
func (s *ristrettoScalar) String() string { return fmt.Sprintf("0x%x", s.s.Bytes()) }
func (s *ristrettoScalar) String() string { return conv.BytesLe2Hex(s.s.Bytes()) }
func (s *ristrettoScalar) SetUint64(n uint64) Scalar { s.s.SetUint64(n); return s }

func (s *ristrettoScalar) IsZero() bool { return s.s.IsNonZeroI() == 0 }
func (s *ristrettoScalar) IsEqual(x Scalar) bool {
return s.s.Equals(&x.(*ristrettoScalar).s)
}
Expand Down
4 changes: 4 additions & 0 deletions group/short.go
Original file line number Diff line number Diff line change
Expand Up @@ -274,6 +274,10 @@ type wScl struct {
func (s *wScl) Group() Group { return s.wG }
func (s *wScl) String() string { return fmt.Sprintf("0x%x", s.k) }
func (s *wScl) SetUint64(n uint64) Scalar { s.fromBig(new(big.Int).SetUint64(n)); return s }
func (s *wScl) IsZero() bool {
return subtle.ConstantTimeCompare(s.k, make([]byte, (s.wG.c.Params().BitSize+7)/8)) == 1
}

func (s *wScl) IsEqual(a Scalar) bool {
aa := s.cvtScl(a)
return subtle.ConstantTimeCompare(s.k, aa.k) == 1
Expand Down
147 changes: 147 additions & 0 deletions math/polynomial/polynomial.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
// Package polynomial provides representations of polynomials over the scalars
// of a group.
package polynomial

import "github.com/cloudflare/circl/group"

// Polynomial stores a polynomial over the set of scalars of a group.
type Polynomial struct {
// Internal representation is in polynomial basis:
// Thus,
// p(x) = \sum_i^k c[i] x^i,
// where k = len(c)-1 is the degree of the polynomial.
c []group.Scalar
}

// New creates a new polynomial given its coefficients in ascending order.
// Thus,
// p(x) = \sum_i^k c[i] x^i,
// where k = len(c)-1 is the degree of the polynomial.
//
// The zero polynomial has degree equal to -1 and can be instantiated passing
// nil to New.
func New(coeffs []group.Scalar) (p Polynomial) {
if l := len(coeffs); l != 0 {
p.c = make([]group.Scalar, l)
for i := range coeffs {
p.c[i] = coeffs[i].Copy()
}
}

return
}

func (p Polynomial) Degree() int {
i := len(p.c) - 1
for i > 0 && p.c[i].IsZero() {
i--
}
return i
}

func (p Polynomial) Evaluate(x group.Scalar) group.Scalar {
px := x.Group().NewScalar()
if l := len(p.c); l != 0 {
px.Set(p.c[l-1])
for i := l - 2; i >= 0; i-- {
px.Mul(px, x)
px.Add(px, p.c[i])
}
}
return px
}

// LagrangePolynomial stores a Lagrange polynomial over the set of scalars of a group.
type LagrangePolynomial struct {
// Internal representation is in Lagrange basis:
// Thus,
// p(x) = \sum_i^k y[i] L_j(x), where k is the degree of the polynomial,
// L_j(x) = \prod_i^k (x-x[i])/(x[j]-x[i]),
// y[i] = p(x[i]), and
// all x[i] are different.
x, y []group.Scalar
}

// NewLagrangePolynomial creates a polynomial in Lagrange basis given a list
// of nodes (x) and values (y), such that:
// p(x) = \sum_i^k y[i] L_j(x), where k is the degree of the polynomial,
// L_j(x) = \prod_i^k (x-x[i])/(x[j]-x[i]),
// y[i] = p(x[i]), and
// all x[i] are different.
// It panics if one of these conditions does not hold.
//
// The zero polynomial has degree equal to -1 and can be instantiated passing
// (nil,nil) to NewLagrangePolynomial.
func NewLagrangePolynomial(x, y []group.Scalar) (l LagrangePolynomial) {
if len(x) != len(y) {
panic("lagrange: invalid length")
}

if !areAllDifferent(x) {
panic("lagrange: x[i] must be different")
}

if n := len(x); n != 0 {
l.x, l.y = make([]group.Scalar, n), make([]group.Scalar, n)
for i := range x {
l.x[i], l.y[i] = x[i].Copy(), y[i].Copy()
}
}

return
}

func (l LagrangePolynomial) Degree() int { return len(l.x) - 1 }

func (l LagrangePolynomial) Evaluate(x group.Scalar) group.Scalar {
px := x.Group().NewScalar()
tmp := x.Group().NewScalar()
for i := range l.x {
LjX := baseRatio(uint(i), l.x, x)
tmp.Mul(l.y[i], LjX)
px.Add(px, tmp)
}

return px
}

// LagrangeBase returns the j-th Lagrange polynomial base evaluated at x.
// Thus, L_j(x) = \prod (x - x[i]) / (x[j] - x[i]) for 0 <= i < k, and i != j.
func LagrangeBase(jth uint, xi []group.Scalar, x group.Scalar) group.Scalar {
if jth >= uint(len(xi)) {
panic("lagrange: invalid index")
}
return baseRatio(jth, xi, x)
}

func baseRatio(jth uint, xi []group.Scalar, x group.Scalar) group.Scalar {
num := x.Copy()
num.SetUint64(1)
den := x.Copy()
den.SetUint64(1)

tmp := x.Copy()
for i := range xi {
if uint(i) != jth {
num.Mul(num, tmp.Sub(x, xi[i]))
den.Mul(den, tmp.Sub(xi[jth], xi[i]))
}
}

return num.Mul(num, den.Inv(den))
}

func areAllDifferent(x []group.Scalar) bool {
m := make(map[string]struct{})
for i := range x {
k, err := x[i].MarshalBinary()
if err != nil {
panic(err)
}
if _, exists := m[string(k)]; exists {
return false
}
m[string(k)] = struct{}{}
}
return true
}
131 changes: 131 additions & 0 deletions math/polynomial/polynomial_test.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
package polynomial_test

import (
"testing"

"github.com/cloudflare/circl/group"
"github.com/cloudflare/circl/internal/test"
"github.com/cloudflare/circl/math/polynomial"
)

func TestPolyDegree(t *testing.T) {
g := group.P256

t.Run("zeroPoly", func(t *testing.T) {
p := polynomial.New(nil)
test.CheckOk(p.Degree() == -1, "it should be -1", t)
p = polynomial.New([]group.Scalar{})
test.CheckOk(p.Degree() == -1, "it should be -1", t)
})

t.Run("constantPoly", func(t *testing.T) {
c := []group.Scalar{
g.NewScalar().SetUint64(0),
g.NewScalar().SetUint64(0),
}
p := polynomial.New(c)
test.CheckOk(p.Degree() == 0, "it should be 0", t)
})

t.Run("linearPoly", func(t *testing.T) {
c := []group.Scalar{
g.NewScalar().SetUint64(0),
g.NewScalar().SetUint64(1),
g.NewScalar().SetUint64(0),
}
p := polynomial.New(c)
test.CheckOk(p.Degree() == 1, "it should be 1", t)
})
}

func TestPolyEval(t *testing.T) {
g := group.P256
c := []group.Scalar{
g.NewScalar(),
g.NewScalar(),
g.NewScalar(),
}
c[0].SetUint64(5)
c[1].SetUint64(5)
c[2].SetUint64(2)
p := polynomial.New(c)

x := g.NewScalar()
x.SetUint64(10)

got := p.Evaluate(x)
want := g.NewScalar()
want.SetUint64(255)
if !got.IsEqual(want) {
test.ReportError(t, got, want)
}
}

func TestLagrange(t *testing.T) {
g := group.P256
c := []group.Scalar{
g.NewScalar(),
g.NewScalar(),
g.NewScalar(),
}
c[0].SetUint64(1234)
c[1].SetUint64(166)
c[2].SetUint64(94)
p := polynomial.New(c)

x := []group.Scalar{g.NewScalar(), g.NewScalar(), g.NewScalar()}
x[0].SetUint64(2)
x[1].SetUint64(4)
x[2].SetUint64(5)

y := []group.Scalar{}
for i := range x {
y = append(y, p.Evaluate(x[i]))
}

zero := g.NewScalar()
l := polynomial.NewLagrangePolynomial(x, y)
test.CheckOk(l.Degree() == p.Degree(), "bad degree", t)

got := l.Evaluate(zero)
want := p.Evaluate(zero)

if !got.IsEqual(want) {
test.ReportError(t, got, want)
}

// Test Kronecker's delta of LagrangeBase.
// Thus:
// L_j(x[i]) = { 1, if i == j;
// { 0, otherwise.
one := g.NewScalar()
one.SetUint64(1)
for j := range x {
for i := range x {
got := polynomial.LagrangeBase(uint(j), x, x[i])

if i == j {
want = one
} else {
want = zero
}

if !got.IsEqual(want) {
test.ReportError(t, got, want)
}
}
}

// Test that inputs are different length
err := test.CheckPanic(func() { polynomial.NewLagrangePolynomial(x, y[:1]) })
test.CheckNoErr(t, err, "should panic")

// Test that nodes must be different.
x[0].Set(x[1])
err = test.CheckPanic(func() { polynomial.NewLagrangePolynomial(x, y) })
test.CheckNoErr(t, err, "should panic")

// Test LagrangeBase wrong index
err = test.CheckPanic(func() { polynomial.LagrangeBase(10, x, zero) })
test.CheckNoErr(t, err, "should panic")
}