Open-source internal and extended research, which we use in our internal and commercial projects.
Focus on
- Data Structures and Algorithms
- Machine Learning, Deep Learning, and AI
- Hosting Service
- SaaS/PaaS
- Tools/Frameworks
Signal processing filter
Python
iOS
float A = sqrt(pow(10.0f, (G/20.0f)));
float beta = sqrt(A / Q);
a0 = (A + 1) - ((A - 1) * omegaC) + (beta * omegaS);
b0 = (A * ((A + 1) + ((A - 1) * omegaC) + (beta * omegaS))) / a0;
b1 = (-2 * A * ((A - 1 ) + ((A + 1) * omegaC))) / a0;
b2 = (A * ((A + 1) + ((A - 1) * omegaC) - (beta * omegaS))) / a0;
a1 = (2 * ((A - 1) - ((A + 1) * omegaC))) / a0;
a2 = ((A + 1) - ((A - 1) * omegaC) - (beta * omegaS)) / a0;
Pattern recognition https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
An easy way to evaluate the accuracy of the model is to calculate a ratio of the total correct predictions out of all predictions made.
Let’s create a getAccuracy function which sums the total correct predictions and returns the accuracy as a percentage of correct classifications.
Python
def getAccuracy(testSet, predictions):
correct = 0
for x in range(len(testSet)):
if testSet[x][-1] is predictions[x]:
correct += 1
return (correct/float(len(testSet))) * 100.0
testSet = [[1,1,1,'a'], [2,2,2,'a'], [3,3,3,'b']]
predictions = ['a', 'a', 'a']
accuracy = getAccuracy(testSet, predictions)
print(accuracy)
- Tensorflow - https://github.com/tensorflow
- PyTorch - https://github.com/pytorch/pytorch
- Keras - https://keras.io/api/
- MXNet https://github.com/apache/incubator-mxnet
Neural Network:
- Chainer - https://github.com/chainer/chainer
- Sonne - https://github.com/deepmind/sonnet
- Heroku: www.heroku.com
- PythonAnywhere: www.pythonanywhere.com
- AWS Elastic Beanstalk: aws.amazon.com/elasticbeanstalk
- DigitalOcean: www.digitalocean.com
- Microsoft Azure: azure.microsoft.com
- Google Cloud Platform (GCP): cloud.google.com
- Render: render.com
- Vercel: vercel.com
- Ionic: https://ionicframework.com
- Ant Design: https://ant.design/