Skip to content

Make second step of the prover happen in O(n) #1

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,6 @@ ark-poly = "0.4.0"
ark-serialize = { version = "0.4.0", default-features = false, features = [ "derive" ] }
rand = { version = "0.8", features = [ "std", "std_rng" ] }
ark-crypto-primitives = { version = "^0.4.0", default-features = false, features = [ "r1cs", "snark", "sponge", "crh" ] }

getrandom = { version = "0.2.10", features = ["js"] }
Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

For wasm-compatibility

[dev-dependencies]
ark-bls12-381 = "0.4.0"
91 changes: 43 additions & 48 deletions src/protogalaxy.rs
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@ use ark_ff::fields::PrimeField;
use ark_std::log2;
use ark_std::{cfg_into_iter, Zero};
use std::marker::PhantomData;
use std::ops::Add;

use ark_poly::{
univariate::{DensePolynomial, SparsePolynomial},
Expand Down Expand Up @@ -65,12 +64,9 @@ where
let f_w = eval_f(r1cs, &w.w);

// F(X)
let mut F_X: SparsePolynomial<C::ScalarField> = SparsePolynomial::zero();
for (i, f_w_i) in f_w.iter().enumerate() {
let lhs = pow_i_over_x::<C::ScalarField>(i, &instance.betas, &deltas);
let curr = &lhs * *f_w_i;
F_X = F_X.add(curr);
}

let F_X: SparsePolynomial<C::ScalarField> =
calc_f_from_btree(&f_w, &instance.betas, &deltas);

let F_X_dense = DensePolynomial::from(F_X.clone());
transcript.add_vec(&F_X_dense.coeffs);
Expand Down Expand Up @@ -287,24 +283,6 @@ fn pow_i<F: PrimeField>(i: usize, betas: &Vec<F>) -> F {
r
}

fn pow_i_over_x<F: PrimeField>(i: usize, betas: &Vec<F>, deltas: &Vec<F>) -> SparsePolynomial<F> {
assert_eq!(betas.len(), deltas.len());

let n = 2_u64.pow(betas.len() as u32);
let b = bit_decompose(i as u64, n as usize);

let mut r: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, F::one())]); // start with r(x) = 1
for (j, beta_j) in betas.iter().enumerate() {
if b[j] {
let curr: SparsePolynomial<F> =
SparsePolynomial::<F>::from_coefficients_vec(vec![(0, *beta_j), (1, deltas[j])]);
r = r.mul(&curr);
}
}
r
}

// lagrange_polys method from caulk: https://github.com/caulk-crypto/caulk/tree/8210b51fb8a9eef4335505d1695c44ddc7bf8170/src/multi/setup.rs#L300
fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<DensePolynomial<F>> {
let mut lagrange_polynomials: Vec<DensePolynomial<F>> = Vec::new();
Expand All @@ -317,6 +295,46 @@ fn lagrange_polys<F: PrimeField>(domain_n: GeneralEvaluationDomain<F>) -> Vec<De
lagrange_polynomials
}

fn calc_f_from_btree<F: PrimeField>(fw: &[F], betas: &[F], deltas: &[F]) -> SparsePolynomial<F> {
assert_eq!(fw.len() & (fw.len() - 1), 0);
assert_eq!(betas.len(), deltas.len());
let mut layers: Vec<Vec<SparsePolynomial<F>>> = Vec::new();
let leaves: Vec<SparsePolynomial<F>> = fw
.iter()
.enumerate()
.map(|e| SparsePolynomial::<F>::from_coefficients_slice(&[(0, *e.1)]))
.collect();
layers.push(leaves.to_vec());
let mut currentNodes = leaves.clone();
while currentNodes.len() > 1 {
let index = layers.len();
let limit: usize = (2 * currentNodes.len())
- 2usize.pow(
(currentNodes.len() & (currentNodes.len() - 1))
.try_into()
.unwrap(),
);
layers.push(vec![]);
for (i, ni) in currentNodes.iter().enumerate().step_by(2) {
if i >= limit {
layers[index] = currentNodes[0..limit].to_vec();
break;
}
let left = ni.clone();
let right = SparsePolynomial::<F>::from_coefficients_vec(vec![
(0, betas[layers.len() - 2]), // FIXME
(1, deltas[layers.len() - 2]), // FIXME
])
.mul(&currentNodes[i + 1]);

layers[index].push(left + right);
}
currentNodes = layers[index].clone();
}
let root_index = layers.len() - 1;
layers[root_index][0].clone()
}

#[derive(Clone, Debug)]
pub struct R1CS<F: PrimeField> {
pub A: Vec<Vec<F>>,
Expand Down Expand Up @@ -445,29 +463,6 @@ mod tests {
}
}

#[test]
fn test_pow_i_over_x() {
let mut rng = ark_std::test_rng();
let t = 3;
let n = 8;
let beta = Fr::rand(&mut rng);
let delta = Fr::rand(&mut rng);
let betas = powers_of_beta(beta, t);
let deltas = powers_of_beta(delta, t);

// compute b + X*d, with X=rand
let x = Fr::rand(&mut rng);
let bxd = vec_add(&betas, &vec_scalar_mul(&deltas, &x));

// assert that computing pow_over_x of betas,deltas, is equivalent to first computing the
// vector [betas+X*deltas] and then computing pow_i over it
for i in 0..n {
let pow_i1 = pow_i_over_x(i, &betas, &deltas);
let pow_i2 = pow_i(i, &bxd);
assert_eq!(pow_i1.evaluate(&x), pow_i2);
}
}

#[test]
fn test_eval_f() {
let r1cs = get_test_r1cs::<Fr>();
Expand Down