Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
This repository was archived by the owner on Nov 17, 2023. It is now read-only.

mx.io.NDArrayIter cant pad when size is large #16996

Closed
@samskalicky

Description

@samskalicky

Description

When input data is smaller than batch size, sometime it errors out with:

Traceback (most recent call last):
  File "test.py", line 7, in <module>
    for batch in dataiter:
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 230, in __next__
    return self.next()
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 682, in next
    data = self.getdata()
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 764, in getdata
    return self._batchify(self.data)
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 751, in _batchify
    second_data = self._getdata(data_source, end=pad)
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 707, in _getdata
    ]]) for x in data_source
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/io/io.py", line 707, in <listcomp>
    ]]) for x in data_source
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py", line 705, in __getitem__
    return self._slice(key.start, key.stop)
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py", line 1338, in _slice
    start, stop, _ = _get_index_range(start, stop, self.shape[0])
  File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/mxnet/ndarray/ndarray.py", line 3080, in _get_index_range
    raise IndexError('Slicing stop %d exceeds limit of %d' % (stop, length))
IndexError: Slicing stop 190 exceeds limit of 10

To Reproduce

import numpy as np
import mxnet as mx

data = np.arange(40).reshape((10,2,2))
dataiter = mx.io.NDArrayIter(data=data, batch_size=200, last_batch_handle='pad')
for batch in dataiter:
     print(batch.data[0].asnumpy().shape)

Using a batch size of 20 succeeds, but larger sizes fail.

Steps to reproduce

This is using the 1.6.0 branch

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions