Skip to content

This project curates a comprehensive collection of research papers examining the relationship between artificial intelligence and sustainability.

License

Notifications You must be signed in to change notification settings

ai-agriculture-circuits-and-systems/ai_agriculture_news

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

26 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Papers

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-04-27

agriculture

Title Date Abstract Comment
Deep Learning Meets Process-Based Models: A Hybrid Approach to Agricultural Challenges 2025-04-22
Show

Process-based models (PBMs) and deep learning (DL) are two key approaches in agricultural modelling, each offering distinct advantages and limitations. PBMs provide mechanistic insights based on physical and biological principles, ensuring interpretability and scientific rigour. However, they often struggle with scalability, parameterisation, and adaptation to heterogeneous environments. In contrast, DL models excel at capturing complex, nonlinear patterns from large datasets but may suffer from limited interpretability, high computational demands, and overfitting in data-scarce scenarios. This study presents a systematic review of PBMs, DL models, and hybrid PBM-DL frameworks, highlighting their applications in agricultural and environmental modelling. We classify hybrid PBM-DL approaches into DL-informed PBMs, where neural networks refine process-based models, and PBM-informed DL, where physical constraints guide deep learning predictions. Additionally, we conduct a case study on crop dry biomass prediction, comparing hybrid models against standalone PBMs and DL models under varying data quality, sample sizes, and spatial conditions. The results demonstrate that hybrid models consistently outperform traditional PBMs and DL models, offering greater robustness to noisy data and improved generalisation across unseen locations. Finally, we discuss key challenges, including model interpretability, scalability, and data requirements, alongside actionable recommendations for advancing hybrid modelling in agriculture. By integrating domain knowledge with AI-driven approaches, this study contributes to the development of scalable, interpretable, and reproducible agricultural models that support data-driven decision-making for sustainable agriculture.

Hybrid Knowledge Transfer through Attention and Logit Distillation for On-Device Vision Systems in Agricultural IoT 2025-04-21
Show

Integrating deep learning applications into agricultural IoT systems faces a serious challenge of balancing the high accuracy of Vision Transformers (ViTs) with the efficiency demands of resource-constrained edge devices. Large transformer models like the Swin Transformers excel in plant disease classification by capturing global-local dependencies. However, their computational complexity (34.1 GFLOPs) limits applications and renders them impractical for real-time on-device inference. Lightweight models such as MobileNetV3 and TinyML would be suitable for on-device inference but lack the required spatial reasoning for fine-grained disease detection. To bridge this gap, we propose a hybrid knowledge distillation framework that synergistically transfers logit and attention knowledge from a Swin Transformer teacher to a MobileNetV3 student model. Our method includes the introduction of adaptive attention alignment to resolve cross-architecture mismatch (resolution, channels) and a dual-loss function optimizing both class probabilities and spatial focus. On the lantVillage-Tomato dataset (18,160 images), the distilled MobileNetV3 attains 92.4% accuracy relative to 95.9% for Swin-L but at an 95% reduction on PC and < 82% in inference latency on IoT devices. (23ms on PC CPU and 86ms/image on smartphone CPUs). Key innovations include IoT-centric validation metrics (13 MB memory, 0.22 GFLOPs) and dynamic resolution-matching attention maps. Comparative experiments show significant improvements over standalone CNNs and prior distillation methods, with a 3.5% accuracy gain over MobileNetV3 baselines. Significantly, this work advances real-time, energy-efficient crop monitoring in precision agriculture and demonstrates how we can attain ViT-level diagnostic precision on edge devices. Code and models will be made available for replication after acceptance.

12 pa...

12 pages and 4 figures

VLLFL: A Vision-Language Model Based Lightweight Federated Learning Framework for Smart Agriculture 2025-04-17
Show

In modern smart agriculture, object detection plays a crucial role by enabling automation, precision farming, and monitoring of resources. From identifying crop health and pest infestations to optimizing harvesting processes, accurate object detection enhances both productivity and sustainability. However, training object detection models often requires large-scale data collection and raises privacy concerns, particularly when sensitive agricultural data is distributed across farms. To address these challenges, we propose VLLFL, a vision-language model-based lightweight federated learning framework (VLLFL). It harnesses the generalization and context-aware detection capabilities of the vision-language model (VLM) and leverages the privacy-preserving nature of federated learning. By training a compact prompt generator to boost the performance of the VLM deployed across different farms, VLLFL preserves privacy while reducing communication overhead. Experimental results demonstrate that VLLFL achieves 14.53% improvement in the performance of VLM while reducing 99.3% communication overhead. Spanning tasks from identifying a wide variety of fruits to detecting harmful animals in agriculture, the proposed framework offers an efficient, scalable, and privacy-preserving solution specifically tailored to agricultural applications.

AgMMU: A Comprehensive Agricultural Multimodal Understanding and Reasoning Benchmark 2025-04-14
Show

We curate a dataset AgMMU for evaluating and developing vision-language models (VLMs) to produce factually accurate answers for knowledge-intensive expert domains. Our AgMMU concentrates on one of the most socially beneficial domains, agriculture, which requires connecting detailed visual observation with precise knowledge to diagnose, e.g., pest identification, management instructions, etc. As a core uniqueness of our dataset, all facts, questions, and answers are extracted from 116,231 conversations between real-world users and authorized agricultural experts. After a three-step dataset curation pipeline with GPT-4o, LLaMA models, and human verification, AgMMU features an evaluation set of 5,460 multiple-choice questions (MCQs) and open-ended questions (OEQs). We also provide a development set that contains 205,399 pieces of agricultural knowledge information, including disease identification, symptoms descriptions, management instructions, insect and pest identification, and species identification. As a multimodal factual dataset, it reveals that existing VLMs face significant challenges with questions requiring both detailed perception and factual knowledge. Moreover, open-source VLMs still demonstrate a substantial performance gap compared to proprietary ones. To advance knowledge-intensive VLMs, we conduct fine-tuning experiments using our development set, which improves LLaVA-1.5 evaluation accuracy by up to 3.1%. We hope that AgMMU can serve both as an evaluation benchmark dedicated to agriculture and a development suite for incorporating knowledge-intensive expertise into general-purpose VLMs.

Proje...

Project Website: https://agmmu.github.io/ Huggingface: https://huggingface.co/datasets/AgMMU/AgMMU_v1/

agriFrame: Agricultural framework to remotely control a rover inside a greenhouse environment 2025-04-12
Show

The growing demand for innovation in agriculture is essential for food security worldwide and more implicit in developing countries. With growing demand comes a reduction in rapid development time. Data collection and analysis are essential in agriculture. However, considering a given crop, its cycle comes once a year, and researchers must wait a few months before collecting more data for the given crop. To overcome this hurdle, researchers are venturing into digital twins for agriculture. Toward this effort, we present an agricultural framework(agriFrame). Here, we introduce a simulated greenhouse environment for testing and controlling a robot and remotely controlling/implementing the algorithms in the real-world greenhouse setup. This work showcases the importance/interdependence of network setup, remotely controllable rover, and messaging protocol. The sophisticated yet simple-to-use agriFrame has been optimized for the simulator on minimal laptop/desktop specifications.

Few-Shot Adaptation of Grounding DINO for Agricultural Domain 2025-04-09
Show

Deep learning models are transforming agricultural applications by enabling automated phenotyping, monitoring, and yield estimation. However, their effectiveness heavily depends on large amounts of annotated training data, which can be labor and time intensive. Recent advances in open-set object detection, particularly with models like Grounding-DINO, offer a potential solution to detect regions of interests based on text prompt input. Initial zero-shot experiments revealed challenges in crafting effective text prompts, especially for complex objects like individual leaves and visually similar classes. To address these limitations, we propose an efficient few-shot adaptation method that simplifies the Grounding-DINO architecture by removing the text encoder module (BERT) and introducing a randomly initialized trainable text embedding. This method achieves superior performance across multiple agricultural datasets, including plant-weed detection, plant counting, insect identification, fruit counting, and remote sensing tasks. Specifically, it demonstrates up to a $\sim24%$ higher mAP than fully fine-tuned YOLO models on agricultural datasets and outperforms previous state-of-the-art methods by $\sim10%$ in remote sensing, under few-shot learning conditions. Our method offers a promising solution for automating annotation and accelerating the development of specialized agricultural AI solutions.

Financial resilience of agricultural and food production companies in Spain: A compositional cluster analysis of the impact of the Ukraine-Russia war (2021-2023) 2025-04-08
Show

This study analyzes the financial resilience of agricultural and food production companies in Spain amid the Ukraine-Russia war using cluster analysis based on financial ratios. This research utilizes centered log-ratios to transform financial ratios for compositional data analysis. The dataset comprises financial information from 1197 firms in Spain's agricultural and food sectors over the period 2021-2023. The analysis reveals distinct clusters of firms with varying financial performance, characterized by metrics of solvency and profitability. The results highlight an increase in resilient firms by 2023, underscoring sectoral adaptation to the conflict's economic challenges. These findings together provide insights for stakeholders and policymakers to improve sectorial stability and strategic planning.

Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making 2025-04-07
Show

As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.

Energy Efficient Planning for Repetitive Heterogeneous Tasks in Precision Agriculture 2025-04-04
Show

Robotic weed removal in precision agriculture introduces a repetitive heterogeneous task planning (RHTP) challenge for a mobile manipulator. RHTP has two unique characteristics: 1) an observe-first-and-manipulate-later (OFML) temporal constraint that forces a unique ordering of two different tasks for each target and 2) energy savings from efficient task collocation to minimize unnecessary movements. RHTP can be framed as a stochastic renewal process. According to the Renewal Reward Theorem, the expected energy usage per task cycle is the long-run average. Traditional task and motion planning focuses on feasibility rather than optimality due to the unknown object and obstacle position prior to execution. However, the known target/obstacle distribution in precision agriculture allows minimizing the expected energy usage. For each instance in this renewal process, we first compute task space partition, a novel data structure that computes all possibilities of task multiplexing and its probabilities with robot reachability. Then we propose a region-based set-coverage problem to formulate the RHTP as a mixed-integer nonlinear programming. We have implemented and solved RHTP using Branch-and-Bound solver. Compared to a baseline in simulations based on real field data, the results suggest a significant improvement in path length, number of robot stops, overall energy usage, and number of replans.

ICRA 2025
FADConv: A Frequency-Aware Dynamic Convolution for Farmland Non-agriculturalization Identification and Segmentation 2025-04-04
Show

Cropland non-agriculturalization refers to the conversion of arable land into non-agricultural uses such as forests, residential areas, and construction sites. This phenomenon not only directly leads to the loss of cropland resources but also poses systemic threats to food security and agricultural sustainability. Accurate identification of cropland and non-cropland areas is crucial for detecting and addressing this issue. Traditional CNNs employ static convolution layers, while dynamic convolution studies demonstrate that adaptively weighting multiple convolutional kernels through attention mechanisms can enhance accuracy. However, existing dynamic convolution methods relying on Global Average Pooling (GAP) for attention weight allocation suffer from information loss, limiting segmentation precision. This paper proposes Frequency-Aware Dynamic Convolution (FADConv) and a Frequency Attention (FAT) module to address these limitations. Building upon the foundational structure of dynamic convolution, we designed FADConv by integrating 2D Discrete Cosine Transform (2D DCT) to capture frequency domain features and fuse them. FAT module generates high-quality attention weights that replace the traditional GAP method,making the combination between dynamic convolution kernels more reasonable.Experiments on the GID and Hi-CNA datasets demonstrate that FADConv significantly improves segmentation accuracy with minimal computational overhead. For instance, ResNet18 with FADConv achieves 1.9% and 2.7% increases in F1-score and IoU for cropland segmentation on GID, with only 58.87M additional MAdds. Compared to other dynamic convolution approaches, FADConv exhibits superior performance in cropland segmentation tasks.

Adaptive path planning for efficient object search by UAVs in agricultural fields 2025-04-03
Show

This paper presents an adaptive path planner for object search in agricultural fields using UAVs. The path planner uses a high-altitude coverage flight path and plans additional low-altitude inspections when the detection network is uncertain. The path planner was evaluated in an offline simulation environment containing real-world images. We trained a YOLOv8 detection network to detect artificial plants placed in grass fields to showcase the potential of our path planner. We evaluated the effect of different detection certainty measures, optimized the path planning parameters, investigated the effects of localization errors and different numbers of objects in the field. The YOLOv8 detection confidence worked best to differentiate between true and false positive detections and was therefore used in the adaptive planner. The optimal parameters of the path planner depended on the distribution of objects in the field, when the objects were uniformly distributed, more low-altitude inspections were needed compared to a non-uniform distribution of objects, resulting in a longer path length. The adaptive planner proved to be robust against localization uncertainty. When increasing the number of objects, the flight path length increased, especially when the objects were uniformly distributed. When the objects were non-uniformly distributed, the adaptive path planner yielded a shorter path than a low-altitude coverage path, even with high number of objects. Overall, the presented adaptive path planner allowed to find non-uniformly distributed objects in a field faster than a coverage path planner and resulted in a compatible detection accuracy. The path planner is made available at https://github.com/wur-abe/uav_adaptive_planner.

Reinsuring AI: Energy, Agriculture, Finance & Medicine as Precedents for Scalable Governance of Frontier Artificial Intelligence 2025-04-02
Show

The governance of frontier artificial intelligence (AI) systems--particularly those capable of catastrophic misuse or systemic failure--requires institutional structures that are robust, adaptive, and innovation-preserving. This paper proposes a novel framework for governing such high-stakes models through a three-tiered insurance architecture: (1) mandatory private liability insurance for frontier model developers; (2) an industry-administered risk pool to absorb recurring, non-catastrophic losses; and (3) federally backed reinsurance for tail-risk events. Drawing from historical precedents in nuclear energy (Price-Anderson), terrorism risk (TRIA), agricultural crop insurance, flood reinsurance, and medical malpractice, the proposal shows how the federal government can stabilize private AI insurance markets without resorting to brittle regulation or predictive licensing regimes. The structure aligns incentives between AI developers and downstream stakeholders, transforms safety practices into insurable standards, and enables modular oversight through adaptive eligibility criteria. By focusing on risk-transfer mechanisms rather than prescriptive rules, this framework seeks to render AI safety a structural feature of the innovation ecosystem itself--integrated into capital markets, not external to them. The paper concludes with a legal and administrative feasibility analysis, proposing avenues for statutory authorization and agency placement within existing federal structures.

Worki...

Working paper version (35 pages). Submitted to So. Ill. Law Journal; full-form citations retained for editorial review. Not peer-reviewed. Subject to revision

Predicting and Mitigating Agricultural Price Volatility Using Climate Scenarios and Risk Models 2025-03-31
Show

Agricultural price volatility challenges sustainable finance, planning, and policy, driven by market dynamics and meteorological factors such as temperature and precipitation. In India, the Minimum Support Price (MSP) system acts as implicit crop insurance, shielding farmers from price drops without premium payments. We analyze the impact of climate on price volatility for soybean (Madhya Pradesh), rice (Assam), and cotton (Gujarat). Using ERA5-Land reanalysis data from the Copernicus Climate Change Service, we analyze historical climate patterns and evaluate two scenarios: SSP2.4.5 (moderate case) and SSP5.8.5 (severe case). Our findings show that weather conditions strongly influence price fluctuations and that integrating meteorological data into volatility models enhances risk-hedging. Using the Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH) model, we estimate conditional price volatility and identify cross-correlations between weather and price volatility movements. Recognizing MSP's equivalence to a European put option, we apply the Black-Scholes model to estimate its implicit premium, quantifying its fiscal cost. We propose this novel market-based risk-hedging mechanism wherein the government purchases insurance equivalent to MSP, leveraging Black-Scholes for accurate premium estimation. Our results underscore the importance of meteorological data in agricultural risk modeling, supporting targeted insurance and strengthening resilience in agricultural finance. This climate-informed financial framework enhances risk-sharing, stabilizes prices, and informs sustainable agricultural policy under growing climate uncertainty.

10 pages, 5 figures
Internet of Things-Based Smart Precision Farming in Soilless Agriculture: Opportunities and Challenges for Global Food Security 2025-03-31
Show

The rapid growth of the global population and the continuous decline in cultivable land pose significant threats to food security. This challenge worsens as climate change further reduces the availability of farmland. Soilless agriculture, such as hydroponics, aeroponics, and aquaponics, offers a sustainable solution by enabling efficient crop cultivation in controlled environments. The integration of the Internet of Things (IoT) with smart precision farming improves resource efficiency, automates environmental control, and ensures stable and high-yield crop production. IoT-enabled smart farming systems utilize real-time monitoring, data-driven decision-making, and automation to optimize water and nutrient usage while minimizing human intervention. This paper explores the opportunities and challenges of IoT-based soilless farming, highlighting its role in sustainable agriculture, urban farming, and global food security. These advanced farming methods ensure greater productivity, resource conservation, and year-round cultivation. However, they also face challenges such as high initial investment, technological dependency, and energy consumption. Through a comprehensive study, bibliometric analysis, and comparative analysis, this research highlights current trends and research gaps. It also outlines future directions for researchers, policymakers, and industry stakeholders to drive innovation and scalability in IoT-driven soilless agriculture. By emphasizing the benefits of vertical farming and Controlled Environment Agriculture (CEA)-enabled soilless techniques, this paper supports informed decision-making to address food security challenges and promote sustainable agricultural innovations.

AgRowStitch: A High-fidelity Image Stitching Pipeline for Ground-based Agricultural Images 2025-03-27
Show

Agricultural imaging often requires individual images to be stitched together into a final mosaic for analysis. However, agricultural images can be particularly challenging to stitch because feature matching across images is difficult due to repeated textures, plants are non-planar, and mosaics built from many images can accumulate errors that cause drift. Although these issues can be mitigated by using georeferenced images or taking images at high altitude, there is no general solution for images taken close to the crop. To address this, we created a user-friendly and open source pipeline for stitching ground-based images of a linear row of crops that does not rely on additional data. First, we use SuperPoint and LightGlue to extract and match features within small batches of images. Then we stitch the images in each batch in series while imposing constraints on the camera movement. After straightening and rescaling each batch mosaic, all batch mosaics are stitched together in series and then straightened into a final mosaic. We tested the pipeline on images collected along 72 m long rows of crops using two different agricultural robots and a camera manually carried over the row. In all three cases, the pipeline produced high-quality mosaics that could be used to georeference real world positions with a mean absolute error of 20 cm. This approach provides accessible leaf-scale stitching to users who need to coarsely georeference positions within a row, but do not have access to accurate positional data or sophisticated imaging systems.

Trends in Open Access Academic Outputs of State Agricultural Universities in India: Patterns from OpenAlex 2025-03-24
Show

Purpose: The study examines the Open Access (OA) landscape of Indian state agricultural universities, focusing on OA growth, leading institutions, prolific authors, preferred sources, funding, APC usage, and trending topics. It aims to identify research gaps, guide future research, and support policymakers in developing effective OA policies Design/methodology/approach The experiment utilized the OpenAlex database to collect global open access (OA) publications from Indian state agricultural universities over the past ten years (2014-2023). Using the Research Organization Registry ID, 97,536 publications were extracted. Data analysis was performed with OpenRefine, and ArcGIS 10.8 and Microsoft Excel were used for visualization. Findings: The global OA research output from state agricultural universities amounted to 65,889 publications across five OA categories: Green OA (7.35%), Diamond OA (6.74%), Gold OA (57.27%), Hybrid OA (9.24%), and Bronze OA (19.41%). Notably, 78.34% of articles were published in 864 low-impact domestic journals. Tamil Nadu Agricultural University produced the most publications in Gold, Diamond, Hybrid, and Bronze OA categories, while Punjab Agricultural University excelled in Green OA and received the highest funding, incurring the most article processing charges (APCs). Collaborative research focusing on agricultural policies, rice water management, soil fertility, and crop productivity had a greater impact. Originality/value The experiment is the first effort to evaluate the OA global academic research outputs of Indian state agriculture universities. The findings offer institutions, state governments, and funding agencies the opportunity to prioritise open-access publishing to promote sustainable agricultural research. Research limitations/implications The study is limited to the publications data indexed in the OpenAlex database.

Optimizing Navigation And Chemical Application in Precision Agriculture With Deep Reinforcement Learning And Conditional Action Tree 2025-03-23
Show

This paper presents a novel reinforcement learning (RL)-based planning scheme for optimized robotic management of biotic stresses in precision agriculture. The framework employs a hierarchical decision-making structure with conditional action masking, where high-level actions direct the robot's exploration, while low-level actions optimize its navigation and efficient chemical spraying in affected areas. The key objectives of optimization include improving the coverage of infected areas with limited battery power and reducing chemical usage, thus preventing unnecessary spraying of healthy areas of the field. Our numerical experimental results demonstrate that the proposed method, Hierarchical Action Masking Proximal Policy Optimization (HAM-PPO), significantly outperforms baseline practices, such as LawnMower navigation + indiscriminate spraying (Carpet Spray), in terms of yield recovery and resource efficiency. HAM-PPO consistently achieves higher yield recovery percentages and lower chemical costs across a range of infection scenarios. The framework also exhibits robustness to observation noise and generalizability under diverse environmental conditions, adapting to varying infection ranges and spatial distribution patterns.

32 pages, 9 figures
Cultivating Cybersecurity: Designing a Cybersecurity Curriculum for the Food and Agriculture Sector 2025-03-20
Show

As technology increasingly integrates into farm settings, the food and agriculture sector has become vulnerable to cyberattacks. However, previous research has indicated that many farmers and food producers lack the cybersecurity education they require to identify and mitigate the growing number of threats and risks impacting the industry. This paper presents an ongoing research effort describing a cybersecurity initiative to educate various populations in the farming and agriculture community. The initiative proposes the development and delivery of a ten-module cybersecurity course, to create a more secure workforce, focusing on individuals who, in the past, have received minimal exposure to cybersecurity education initiatives.

Prese...

Presented at 20th Interna@onal Conference on Cyber Warfare and Security (ICCWS 2025), Williamsburg, Virginia, USA

Investigating The Implications of Cyberattacks Against Precision Agricultural Equipment 2025-03-20
Show

As various technologies are integrated and implemented into the food and agricultural industry, it is increasingly important for stakeholders throughout the sector to identify and reduce cybersecurity vulnerabilities and risks associated with these technologies. However, numerous industry and government reports suggest that many farmers and agricultural equipment manufacturers do not fully understand the cyber threats posed by modern agricultural technologies, including CAN bus-driven farming equipment. This paper addresses this knowledge gap by attempting to quantify the cybersecurity risks associated with cyberattacks on farming equipment that utilize CAN bus technology. The contribution of this paper is twofold. First, it presents a hypothetical case study, using real-world data, to illustrate the specific and wider impacts of a cyberattack on a CAN bus-driven fertilizer applicator employed in row-crop farming. Second, it establishes a foundation for future research on quantifying cybersecurity risks related to agricultural machinery.

Prese...

Presented at 20th International Conference on Cyber Warfare and Security (ICCWS 2025), Williamsburg, Virginia, USA

Intelligent Agricultural Greenhouse Control System Based on Internet of Things and Machine Learning 2025-03-20
Show

This study endeavors to conceptualize and execute a sophisticated agricultural greenhouse control system grounded in the amalgamation of the Internet of Things (IoT) and machine learning. Through meticulous monitoring of intrinsic environmental parameters within the greenhouse and the integration of machine learning algorithms, the conditions within the greenhouse are aptly modulated. The envisaged outcome is an enhancement in crop growth efficiency and yield, accompanied by a reduction in resource wastage. In the backdrop of escalating global population figures and the escalating exigencies of climate change, agriculture confronts unprecedented challenges. Conventional agricultural paradigms have proven inadequate in addressing the imperatives of food safety and production efficiency. Against this backdrop, greenhouse agriculture emerges as a viable solution, proffering a controlled milieu for crop cultivation to augment yields, refine quality, and diminish reliance on natural resources [b1]. Nevertheless, greenhouse agriculture contends with a gamut of challenges. Traditional greenhouse management strategies, often grounded in experiential knowledge and predefined rules, lack targeted personalized regulation, thereby resulting in resource inefficiencies. The exigencies of real-time monitoring and precise control of the greenhouse's internal environment gain paramount importance with the burgeoning scale of agriculture. To redress this challenge, the study introduces IoT technology and machine learning algorithms into greenhouse agriculture, aspiring to institute an intelligent agricultural greenhouse control system conducive to augmenting the efficiency and sustainability of agricultural production.

CAFEs: Cable-driven Collaborative Floating End-Effectors for Agriculture Applications 2025-03-19
Show

CAFEs (Collaborative Agricultural Floating End-effectors) is a new robot design and control approach to automating large-scale agricultural tasks. Based upon a cable driven robot architecture, by sharing the same roller-driven cable set with modular robotic arms, a fast-switching clamping mechanism allows each CAFE to clamp onto or release from the moving cables, enabling both independent and synchronized movement across the workspace. The methods developed to enable this system include the mechanical design, precise position control and a dynamic model for the spring-mass liked system, ensuring accurate and stable movement of the robotic arms. The system's scalability is further explored by studying the tension and sag in the cables to maintain performance as more robotic arms are deployed. Experimental and simulation results demonstrate the system's effectiveness in tasks including pick-and-place showing its potential to contribute to agricultural automation.

Information Fusion in Smart Agriculture: Machine Learning Applications and Future Research Directions 2025-03-18
Show

Machine learning (ML) is a rapidly evolving technology with expanding applications across various fields. This paper presents a comprehensive survey of recent ML applications in agriculture for sustainability and efficiency. Existing reviews mainly focus on narrow subdomains or lack a fusion-driven perspectives. This study provides a combined analysis of ML applications in agriculture, structured around five key objectives: (i) Analyzing ML techniques across pre-harvesting, harvesting, and post-harvesting phases. (ii) Demonstrating how ML can be used with agricultural data and data fusion. (iii) Conducting a bibliometric and statistical analysis to reveal research trends and activity. (iv) Investigating real-world case studies of leading artificial intelligence (AI)-driven agricultural companies that use different types of multisensors and multisource data. (v) Compiling publicly available datasets to support ML model training. Going beyond existing previous reviews, this review focuses on how machine learning (ML) techniques, combined with multi-source data fusion (integrating remote sensing, IoT, and climate analytics), enhance precision agriculture by improving predictive accuracy and decision-making. Case studies and statistical insights illustrate the evolving landscape of AI driven smart farming, while future research directions also discusses challenges associated with data fusion for heterogeneous datasets. This review bridges the gap between AI research and agricultural applications, offering a roadmap for researchers, industry professionals, and policymakers to harness information fusion and ML for advancing precision agriculture.

Agent-Based Simulation of UAV Battery Recharging for IoT Applications: Precision Agriculture, Disaster Recovery, and Dengue Vector Control 2025-03-16
Show

The low battery autonomy of Unnamed Aerial Vehicles (UAVs or drones) can make smart farming (precision agriculture), disaster recovery, and the fighting against dengue vector applications difficult. This article considers two approaches, first enumerating the characteristics observed in these three IoT application types and then modeling an UAV's battery recharge coordination using the Agent-Based Simulation (ABS) approach. In this way, we propose that each drone inside the swarm does not communicate concerning this recharge coordination decision, reducing energy usage and permitting remote usage. A total of 6000 simulations were run to evaluate how two proposed policies, the BaseLine (BL) and ChargerThershold (CT) coordination recharging policy, behave in 30 situations regarding how each simulation sets conclude the simulation runs and how much time they work until recharging results. CT policy shows more reliable results in extreme system usage. This work conclusion presents the potential of these three IoT applications to achieve their perpetual service without communication between drones and ground stations. This work can be a baseline for future policies and simulation parameter enhancements.

22 pages
Generative AI in Agriculture: Creating Image Datasets Using DALL.E's Advanced Large Language Model Capabilities 2025-03-15
Show

This research investigated the role of artificial intelligence (AI), specifically the DALL.E model by OpenAI, in advancing data generation and visualization techniques in agriculture. DALL.E, an advanced AI image generator, works alongside ChatGPT's language processing to transform text descriptions and image clues into realistic visual representations of the content. The study used both approaches of image generation: text-to-image and image-to-image (variation). Six types of datasets depicting fruit crop environment were generated. These AI-generated images were then compared against ground truth images captured by sensors in real agricultural fields. The comparison was based on Peak Signal-to-Noise Ratio (PSNR) and Feature Similarity Index (FSIM) metrics. The image-to-image generation exhibited a 5.78% increase in average PSNR over text-to-image methods, signifying superior image clarity and quality. However, this method also resulted in a 10.23% decrease in average FSIM, indicating a diminished structural and textural similarity to the original images. Similar to these measures, human evaluation also showed that images generated using image-to-image-based method were more realistic compared to those generated with text-to-image approach. The results highlighted DALL.E's potential in generating realistic agricultural image datasets and thus accelerating the development and adoption of imaging-based precision agricultural solutions. In future, DALL.E along with other alternative LLM based image generation models such as MidJourney, Stable Diffusion, Craiyon, Imagen, Parti, DreamStudio, Make-A-Scene, DeepDream, and VQ-GAN + CLIP could demonstrate further significant potential for enhancing image clarity, quality, and realism in depicting agricultural environments, which could revolutionize precision farming practices.

9 Fig...

9 Figures, 1 table, 19 pages

Reliable and Cost-Efficient IoT Connectivity for Smart Agriculture: A Comparative Study of LPWAN, 5G, and Hybrid Connectivity Models 2025-03-14
Show

The integration of the Internet of Things (IoT) in smart agriculture has transformed farming practices by enabling real time monitoring, data-driven decision making, and automation. However, ensuring reliable connectivity in diverse agricultural environments remains a critical challenge. This paper analyzes the performance trade offs between Low Power Wide Area Networks (LPWAN), specifically LoRaWAN, NBIoT, and Sigfox and cellular networks (4G and 5G) in agricultural applications. Beyond a comprehensive literature review, this study evaluates hybrid LPWAN and 5G architectures that integrate the strengths of both network types to enhance cost-efficiency and connectivity reliability. Using real-world case studies, the findings demonstrate that hybrid LPWAN and 5G models can reduce connectivity costs by up to 30% while significantly improving network reliability in remote agricultural settings. This work provides actionable recommendations for selecting optimal IoT connectivity solutions based on agricultural requirements and proposes future research directions to further optimize IoT infrastructure in smart farming.

23 pa...

23 pages, 2 tables, and 2 figures, conference

Force Aware Branch Manipulation To Assist Agricultural Tasks 2025-03-11
Show

This study presents a methodology to safely manipulate branches to aid various agricultural tasks. Humans in a real agricultural environment often manipulate branches to perform agricultural tasks effectively, but current agricultural robots lack this capability. This proposed strategy to manipulate branches can aid in different precision agriculture tasks, such as fruit picking in dense foliage, pollinating flowers under occlusion, and moving overhanging vines and branches for navigation. The proposed method modifies RRT* to plan a path that satisfies the branch geometric constraints and obeys branch deformable characteristics. Re-planning is done to obtain a path that helps the robot exert force within a desired range so that branches are not damaged during manipulation. Experimentally, this method achieved a success rate of 78% across 50 trials, successfully moving a branch from different starting points to a target region.

Collision-Aware Traversability Analysis for Autonomous Vehicles in the Context of Agricultural Robotics 2025-03-11
Show

In this paper, we introduce a novel method for safe navigation in agricultural robotics. As global environmental challenges intensify, robotics offers a powerful solution to reduce chemical usage while meeting the increasing demands for food production. However, significant challenges remain in ensuring the autonomy and resilience of robots operating in unstructured agricultural environments. Obstacles such as crops and tall grass, which are deformable, must be identified as safely traversable, compared to rigid obstacles. To address this, we propose a new traversability analysis method based on a 3D spectral map reconstructed using a LIDAR and a multispectral camera. This approach enables the robot to distinguish between safe and unsafe collisions with deformable obstacles. We perform a comprehensive evaluation of multispectral metrics for vegetation detection and incorporate these metrics into an augmented environmental map. Utilizing this map, we compute a physics-based traversability metric that accounts for the robot's weight and size, ensuring safe navigation over deformable obstacles.

Accep...

Accepted for publication in the 2025 IEEE International Conference on Robotics and Automation (ICRA25)

DODA: Adapting Object Detectors to Dynamic Agricultural Environments in Real-Time with Diffusion 2025-03-08
Show

Object detection has wide applications in agriculture, but domain shifts of diverse environments limit the broader use of the trained models. Existing domain adaptation methods usually require retraining the model for new domains, which is impractical for agricultural applications due to constantly changing environments. In this paper, we propose DODA ($D$iffusion for $O$bject-detection $D$omain Adaptation in $A$griculture), a diffusion-based framework that can adapt the detector to a new domain in just 2 minutes. DODA incorporates external domain embeddings and an improved layout-to-image approach, allowing it to generate high-quality detection data for new domains without additional training. We demonstrate DODA's effectiveness on the Global Wheat Head Detection dataset, where fine-tuning detectors on DODA-generated data yields significant improvements across multiple domains. DODA provides a simple yet powerful solution for agricultural domain adaptation, reducing the barriers for growers to use detection in personalised environments. The code is available at https://github.com/UTokyo-FieldPhenomics-Lab/DODA.

A Dataset and Benchmark for Shape Completion of Fruits for Agricultural Robotics 2025-03-06
Show

As the world population is expected to reach 10 billion by 2050, our agricultural production system needs to double its productivity despite a decline of human workforce in the agricultural sector. Autonomous robotic systems are one promising pathway to increase productivity by taking over labor-intensive manual tasks like fruit picking. To be effective, such systems need to monitor and interact with plants and fruits precisely, which is challenging due to the cluttered nature of agricultural environments causing, for example, strong occlusions. Thus, being able to estimate the complete 3D shapes of objects in presence of occlusions is crucial for automating operations such as fruit harvesting. In this paper, we propose the first publicly available 3D shape completion dataset for agricultural vision systems. We provide an RGB-D dataset for estimating the 3D shape of fruits. Specifically, our dataset contains RGB-D frames of single sweet peppers in lab conditions but also in a commercial greenhouse. For each fruit, we additionally collected high-precision point clouds that we use as ground truth. For acquiring the ground truth shape, we developed a measuring process that allows us to record data of real sweet pepper plants, both in the lab and in the greenhouse with high precision, and determine the shape of the sensed fruits. We release our dataset, consisting of almost 7,000 RGB-D frames belonging to more than 100 different fruits. We provide segmented RGB-D frames, with camera intrinsics to easily obtain colored point clouds, together with the corresponding high-precision, occlusion-free point clouds obtained with a high-precision laser scanner. We additionally enable evaluation of shape completion approaches on a hidden test set through a public challenge on a benchmark server.

A Novel Control Strategy for Offset Points Tracking in the Context of Agricultural Robotics 2025-03-06
Show

In this paper, we present a novel method to control a rigidly connected location on the vehicle, such as a point on the implement in case of agricultural tasks. Agricultural robots are transforming modern farming by enabling precise and efficient operations, replacing humans in arduous tasks while reducing the use of chemicals. Traditionnaly, path_following algorithms are designed to guide the vehicle's center along a predefined trajetory. However, since the actual agronomic task is performed by the implement, it is essential to control a specific point on the implement itself rather than vehicle's center. As such, we present in this paper two approaches for achieving the control of an offset point on the robot. The first approach adapts existing control laws, initially inteded for rear axle's midpoint, to manage the desired lateral deviation. The second approach employs backstepping control techniques to create a control law that directly targets the implement. We conduct real-world experiments, highlighting the limitations of traditional approaches for offset points control, and demonstrating the strengths and weaknesses of the proposed methods.

JPDS-NN: Reinforcement Learning-Based Dynamic Task Allocation for Agricultural Vehicle Routing Optimization 2025-03-04
Show

The Entrance Dependent Vehicle Routing Problem (EDVRP) is a variant of the Vehicle Routing Problem (VRP) where the scale of cities influences routing outcomes, necessitating consideration of their entrances. This paper addresses EDVRP in agriculture, focusing on multi-parameter vehicle planning for irregularly shaped fields. To address the limitations of traditional methods, such as heuristic approaches, which often overlook field geometry and entrance constraints, we propose a Joint Probability Distribution Sampling Neural Network (JPDS-NN) to effectively solve the EDVRP. The network uses an encoder-decoder architecture with graph transformers and attention mechanisms to model routing as a Markov Decision Process, and is trained via reinforcement learning for efficient and rapid end-to-end planning. Experimental results indicate that JPDS-NN reduces travel distances by 48.4-65.4%, lowers fuel consumption by 14.0-17.6%, and computes two orders of magnitude faster than baseline methods, while demonstrating 15-25% superior performance in dynamic arrangement scenarios. Ablation studies validate the necessity of cross-attention and pre-training. The framework enables scalable, intelligent routing for large-scale farming under dynamic constraints.

8 pag...

8 pages, 7 figures, submitted to IROS 2025

Leveraging Vision Language Models for Specialized Agricultural Tasks 2025-03-01
Show

As Vision Language Models (VLMs) become increasingly accessible to farmers and agricultural experts, there is a growing need to evaluate their potential in specialized tasks. We present AgEval, a comprehensive benchmark for assessing VLMs' capabilities in plant stress phenotyping, offering a solution to the challenge of limited annotated data in agriculture. Our study explores how general-purpose VLMs can be leveraged for domain-specific tasks with only a few annotated examples, providing insights into their behavior and adaptability. AgEval encompasses 12 diverse plant stress phenotyping tasks, evaluating zero-shot and few-shot in-context learning performance of state-of-the-art models including Claude, GPT, Gemini, and LLaVA. Our results demonstrate VLMs' rapid adaptability to specialized tasks, with the best-performing model showing an increase in F1 scores from 46.24% to 73.37% in 8-shot identification. To quantify performance disparities across classes, we introduce metrics such as the coefficient of variation (CV), revealing that VLMs' training impacts classes differently, with CV ranging from 26.02% to 58.03%. We also find that strategic example selection enhances model reliability, with exact category examples improving F1 scores by 15.38% on average. AgEval establishes a framework for assessing VLMs in agricultural applications, offering valuable benchmarks for future evaluations. Our findings suggest that VLMs, with minimal few-shot examples, show promise as a viable alternative to traditional specialized models in plant stress phenotyping, while also highlighting areas for further refinement. Results and benchmark details are available at: https://github.com/arbab-ml/AgEval

Publi...

Published at WACV 2025

AgroLLM: Connecting Farmers and Agricultural Practices through Large Language Models for Enhanced Knowledge Transfer and Practical Application 2025-02-28
Show

AgroLLM is an AI-powered chatbot designed to enhance knowledge-sharing and education in agriculture using Large Language Models (LLMs) and a Retrieval-Augmented Generation (RAG) framework. By using a comprehensive open-source agricultural database, AgroLLM provides accurate, contextually relevant responses while reducing incorrect information retrieval. The system utilizes the FAISS vector database for efficient similarity searches, ensuring rapid access to agricultural knowledge. A comparative study of three advanced models: Gemini 1.5 Flash, ChatGPT-4o Mini, and Mistral-7B-Instruct-v0.2 was conducted to evaluate performance across four key agricultural domains: Agriculture and Life Sciences, Agricultural Management, Agriculture and Forestry, and Agriculture Business. Key evaluation metrics included embedding quality, search efficiency, and response relevance. Results indicated that ChatGPT-4o Mini with RAG achieved the highest accuracy at 93%. Continuous feedback mechanisms enhance response quality, making AgroLLM a benchmark AI-driven educational tool for farmers, researchers, and professionals, promoting informed decision-making and improved agricultural practices.

PlantPal: Leveraging Precision Agriculture Robots to Facilitate Remote Engagement in Urban Gardening 2025-02-26
Show

Urban gardening is widely recognized for its numerous health and environmental benefits. However, the lack of suitable garden spaces, demanding daily schedules and limited gardening expertise present major roadblocks for citizens looking to engage in urban gardening. While prior research has explored smart home solutions to support urban gardeners, these approaches currently do not fully address these practical barriers. In this paper, we present PlantPal, a system that enables the cultivation of garden spaces irrespective of one's location, expertise level, or time constraints. PlantPal enables the shared operation of a precision agriculture robot (PAR) that is equipped with garden tools and a multi-camera system. Insights from a 3-week deployment (N=18) indicate that PlantPal facilitated the integration of gardening tasks into daily routines, fostered a sense of connection with one's field, and provided an engaging experience despite the remote setting. We contribute design considerations for future robot-assisted urban gardening concepts.

Wireless sensor networks data synchronization using node MCU memory for precision agriculture applications 2025-02-25
Show

Wireless Sensor Networks have risen as a highly promising technology suitable for precision agriculture implementations, enabling efficient monitoring and control of agricultural processes. In precision agriculture, accurate and synchronized data collection is crucial for effective analysis and decision making. Using principles of information theory, we can define conditions and parameters that influence the efficient transmission and processing of information. Existing technologies have limitations in maintaining consistent time references, handling node failures, and unreliable communication links, leading to inaccurate data readings. Reliable data storage is demanding now-a-days for storing data on local monitoring station as well as in online live server. Sometime internet is not working properly due to congestion and there is frequent packet loss. Current solutions often synchronize records based on database timestamps, leading to record duplication and waste storage. Both databases synchronize each other after internet restoration. By providing synchronization among nodes and data, accuracy and storage will be saved in IoT based WSNs for precision agriculture applications. A prototype Node-MCU internal memory is used as a resource for achieving data synchronization. This proposed work generates record ID from Node MCU EEPROM which helps in records synchronization if there is any packet loss at the local server or at the online server to maintain synchronization accuracy despite unreliable communication links. Experiment shows that for a particular duration Node MCU generated 2364 packets and packet loss at local server was 08 and at online server was 174 packets. Results shows that after synchronization 99.87% packets were synchronized. Using previous technique of timestamp, the redundancy was 70% which reduced to 0% using our proposed technique.

25 pa...

25 pages, 12 figures, 31 references

Self-Supervised Data Generation for Precision Agriculture: Blending Simulated Environments with Real Imagery 2025-02-25
Show

In precision agriculture, the scarcity of labeled data and significant covariate shifts pose unique challenges for training machine learning models. This scarcity is particularly problematic due to the dynamic nature of the environment and the evolving appearance of agricultural subjects as living things. We propose a novel system for generating realistic synthetic data to address these challenges. Utilizing a vineyard simulator based on the Unity engine, our system employs a cut-and-paste technique with geometrical consistency considerations to produce accurate photo-realistic images and labels from synthetic environments to train detection algorithms. This approach generates diverse data samples across various viewpoints and lighting conditions. We demonstrate considerable performance improvements in training a state-of-the-art detector by applying our method to table grapes cultivation. The combination of techniques can be easily automated, an increasingly important consideration for adoption in agricultural practice.

Prese...

Presented at 2024 IEEE 20th International Conference on Automation Science and Engineering (CASE)

A survey of datasets for computer vision in agriculture 2025-02-24
Show

In agricultural research, there has been a recent surge in the amount of Computer Vision (CV) focused work. But unlike general CV research, large high-quality public datasets are sparsely available. This can be partially attributed to the high variability between different agricultural tasks, crops and environments as well as the complexity of data collection, but it is also influenced by the reticence to publish datasets by many authors. This, as well as the lack of a widely used agricultural data repository, are impactful factors that hinder research in applied CV for agriculture as well as the usage of agricultural data in general-purpose CV research. In this survey, we provide a large number of high-quality datasets of images taken on fields. Overall, we find 45 datasets, which are listed in this paper as well as in an online catalog on the project website: https://smartfarminglab.github.io/field_dataset_survey/.

12 pa...

12 pages, 2 figures, published in the proceedings of the 45th GIL Annual Conference (GIL-Jahrestagung), Digitale Infrastrukturen f"ur eine nachhaltige Land-, Forst- und Ern"ahrungswirtschaft (2025)

Autonomous Agricultural Monitoring with Aerial Drones and RF Energy-Harvesting Sensor Tags 2025-02-22
Show

In precision agriculture and plant science, there is an increasing demand for wireless sensors that are easy to deploy, maintain, and monitor. This paper investigates a novel approach that leverages recent advances in extremely low-power wireless communication and sensing, as well as the rapidly increasing availability of unmanned aerial vehicle (UAV) platforms. By mounting a specialized wireless payload on a UAV, battery-less sensor tags can harvest wireless beacon signals emitted from the drone, dramatically reducing the cost per sensor. These tags can measure environmental information such as temperature and humidity, then encrypt and transmit the data in the range of several meters. An experimental implementation was constructed at AERPAW, an NSF-funded wireless aerial drone research platform. While ground-based tests confirmed reliable sensor operation and data collection, airborne trials encountered wireless interference that impeded successfully detecting tag data. Despite these challenges, our results suggest further refinements could improve reliability and advance precision agriculture and agrarian research.

accep...

accepted by a conference

WeedsGalore: A Multispectral and Multitemporal UAV-based Dataset for Crop and Weed Segmentation in Agricultural Maize Fields 2025-02-18
Show

Weeds are one of the major reasons for crop yield loss but current weeding practices fail to manage weeds in an efficient and targeted manner. Effective weed management is especially important for crops with high worldwide production such as maize, to maximize crop yield for meeting increasing global demands. Advances in near-sensing and computer vision enable the development of new tools for weed management. Specifically, state-of-the-art segmentation models, coupled with novel sensing technologies, can facilitate timely and accurate weeding and monitoring systems. However, learning-based approaches require annotated data and show a lack of generalization to aerial imaging for different crops. We present a novel dataset for semantic and instance segmentation of crops and weeds in agricultural maize fields. The multispectral UAV-based dataset contains images with RGB, red-edge, and near-infrared bands, a large number of plant instances, dense annotations for maize and four weed classes, and is multitemporal. We provide extensive baseline results for both tasks, including probabilistic methods to quantify prediction uncertainty, improve model calibration, and demonstrate the approach's applicability to out-of-distribution data. The results show the effectiveness of the two additional bands compared to RGB only, and better performance in our target domain than models trained on existing datasets. We hope our dataset advances research on methods and operational systems for fine-grained weed identification, enhancing the robustness and applicability of UAV-based weed management. The dataset and code are available at https://github.com/GFZ/weedsgalore

11 pa...

11 pages, 7 figures, 7 tables

Sensing-based Robustness Challenges in Agricultural Robotic Harvesting 2025-02-18
Show

This paper presents the challenges agricultural robotic harvesters face in detecting and localising fruits under various environmental disturbances. In controlled laboratory settings, both the traditional HSV (Hue Saturation Value) transformation and the YOLOv8 (You Only Look Once) deep learning model were employed. However, only YOLOv8 was utilised in outdoor experiments, as the HSV transformation was not capable of accurately drawing fruit contours. Experiments include ten distinct fruit patterns with six apples and six oranges. A grid structure for homography (perspective) transformation was employed to convert detected midpoints into 3D world coordinates. The experiments evaluated detection and localisation under varying lighting and background disturbances, revealing accurate performance indoors, but significant challenges outdoors. Our results show that indoor experiments using YOLOv8 achieved 100% detection accuracy, while outdoor conditions decreased performance, with an average accuracy of 69.15% for YOLOv8 under direct sunlight. The study demonstrates that real-world applications reveal significant limitations due to changing lighting, background disturbances, and colour and shape variability. These findings underscore the need for further refinement of algorithms and sensors to enhance the robustness of robotic harvesters for agricultural use.

6 pages
WeedVision: Multi-Stage Growth and Classification of Weeds using DETR and RetinaNet for Precision Agriculture 2025-02-16
Show

Weed management remains a critical challenge in agriculture, where weeds compete with crops for essential resources, leading to significant yield losses. Accurate detection of weeds at various growth stages is crucial for effective management yet challenging for farmers, as it requires identifying different species at multiple growth phases. This research addresses these challenges by utilizing advanced object detection models, specifically, the Detection Transformer (DETR) with a ResNet50 backbone and RetinaNet with a ResNeXt101 backbone, to identify and classify 16 weed species of economic concern across 174 classes, spanning their 11 weeks growth stages from seedling to maturity. A robust dataset comprising 203,567 images was developed, meticulously labeled by species and growth stage. The models were rigorously trained and evaluated, with RetinaNet demonstrating superior performance, achieving a mean Average Precision (mAP) of 0.907 on the training set and 0.904 on the test set, compared to DETR's mAP of 0.854 and 0.840, respectively. RetinaNet also outperformed DETR in recall and inference speed of 7.28 FPS, making it more suitable for real time applications. Both models showed improved accuracy as plants matured. This research provides crucial insights for developing precise, sustainable, and automated weed management strategies, paving the way for real time species specific detection systems and advancing AI-assisted agriculture through continued innovation in model development and early detection accuracy.

Accep...

Accepted and Presented to ICMLA, 2024

Consumer Segmentation and Participation Drivers in Community-Supported Agriculture: A Choice Experiment and PLS-SEM Approach 2025-02-14
Show

As the global food system faces increasing challenges from sustainability, climate change, and food security issues, alternative food networks like Community-Supported Agriculture (CSA) play an essential role in fostering stronger connections between consumers and producers. However, understanding consumer engagement with CSA is fragmented, particularly in Japan where CSA participation is still emerging. This study aims to identify potential CSA participants in Japan and validate existing theories on CSA participation through a quantitative analysis of 2,484 Japanese consumers. Using choice experiments, Latent Class Analysis, and Partial Least Squares Structural Equation Modeling, we identified five distinct consumer segments. The "Sustainable Food Seekers" group showed the highest positive utility for CSA, driven primarily by "Food Education and Learning Opportunities" and "Contribution to Environmental and Social Issues." These factors were consistently significant across all segments, suggesting that many Japanese consumers value CSA for its educational and environmental benefits. In contrast, factors related to "Variety of Ingredients" were less influential in determining participation intentions. The findings suggest that promoting CSA in Japan may be most effective by emphasizing its role in environmental and social impact, rather than focusing solely on product attributes like organic certification, which is readily available in supermarkets. This reflects a key distinction between CSA adoption in Japan and in other cultural contexts, where access to organic produce is a primary driver. For "Sustainable Food Seekers," CSA offers a way to contribute to broader societal goals rather than just securing organic products.

29 pages, 5 figures
Multispectral Remote Sensing for Weed Detection in West Australian Agricultural Lands 2025-02-12
Show

The Kondinin region in Western Australia faces significant agricultural challenges due to pervasive weed infestations, causing economic losses and ecological impacts. This study constructs a tailored multispectral remote sensing dataset and an end-to-end framework for weed detection to advance precision agriculture practices. Unmanned aerial vehicles were used to collect raw multispectral data from two experimental areas (E2 and E8) over four years, covering 0.6046 km^{2} and ground truth annotations were created with GPS-enabled vehicles to manually label weeds and crops. The dataset is specifically designed for agricultural applications in Western Australia. We propose an end-to-end framework for weed detection that includes extensive preprocessing steps, such as denoising, radiometric calibration, image alignment, orthorectification, and stitching. The proposed method combines vegetation indices (NDVI, GNDVI, EVI, SAVI, MSAVI) with multispectral channels to form classification features, and employs several deep learning models to identify weeds based on the input features. Among these models, ResNet achieves the highest performance, with a weed detection accuracy of 0.9213, an F1-Score of 0.8735, an mIOU of 0.7888, and an mDC of 0.8865, validating the efficacy of the dataset and the proposed weed detection method.

8 pag...

8 pages, 9 figures, 1 table, Accepted for oral presentation at IEEE 25th International Conference on Digital Image Computing: Techniques and Applications (DICTA 2024). Conference Proceeding: 979-8-3503-7903-7/24/$31.00 (C) 2024 IEEE

Agricultural Field Boundary Detection through Integration of "Simple Non-Iterative Clustering (SNIC) Super Pixels" and "Canny Edge Detection Method" 2025-02-06
Show

Efficient use of cultivated areas is a necessary factor for sustainable development of agriculture and ensuring food security. Along with the rapid development of satellite technologies in developed countries, new methods are being searched for accurate and operational identification of cultivated areas. In this context, identification of cropland boundaries based on spectral analysis of data obtained from satellite images is considered one of the most optimal and accurate methods in modern agriculture. This article proposes a new approach to determine the suitability and green index of cultivated areas using satellite data obtained through the "Google Earth Engine" (GEE) platform. In this approach, two powerful algorithms, "SNIC (Simple Non-Iterative Clustering) Super Pixels" and "Canny Edge Detection Method", are combined. The SNIC algorithm combines pixels in a satellite image into larger regions (super pixels) with similar characteristics, thereby providing better image analysis. The Canny Edge Detection Method detects sharp changes (edges) in the image to determine the precise boundaries of agricultural fields. This study, carried out using high-resolution multispectral data from the Sentinel-2 satellite and the Google Earth Engine JavaScript API, has shown that the proposed method is effective in accurately and reliably classifying randomly selected agricultural fields. The combined use of these two tools allows for more accurate determination of the boundaries of agricultural fields by minimizing the effects of outliers in satellite images. As a result, more accurate and reliable maps can be created for agricultural monitoring and resource management over large areas based on the obtained data. By expanding the application capabilities of cloud-based platforms and artificial intelligence methods in the agricultural field.

4 pages, 2 figures
Precision Agriculture Revolution: Integrating Digital Twins and Advanced Crop Recommendation for Optimal Yield 2025-02-06
Show

With the help of a digital twin structure, Agriculture 4.0 technologies like weather APIs (Application programming interface), GPS (Global Positioning System) modules, and NPK (Nitrogen, Phosphorus and Potassium) soil sensors and machine learning recommendation models, we seek to revolutionize agricultural production through this concept. In addition to providing precise crop growth forecasts, the combination of real-time data on soil composition, meteorological dynamics, and geographic coordinates aims to support crop recommendation models and simulate predictive scenarios for improved water and pesticide management.

BYON: Bring Your Own Networks for Digital Agriculture Applications 2025-02-03
Show

Digital agriculture technologies rely on sensors, drones, robots, and autonomous farm equipment to improve farm yields and incorporate sustainability practices. However, the adoption of such technologies is severely limited by the lack of broadband connectivity in rural areas. We argue that farming applications do not require permanent always-on connectivity. Instead, farming activity and digital agriculture applications follow seasonal rhythms of agriculture. Therefore, the need for connectivity is highly localized in time and space. We introduce BYON, a new connectivity model for high bandwidth agricultural applications that relies on emerging connectivity solutions like citizens broadband radio service (CBRS) and satellite networks. BYON creates an agile connectivity solution that can be moved along a farm to create spatio-temporal connectivity bubbles. BYON incorporates a new gateway design that reacts to the presence of crops and optimizes coverage in agricultural settings. We evaluate BYON in a production farm and demonstrate its benefits.

EcoWeedNet: A Lightweight and Automated Weed Detection Method for Sustainable Next-Generation Agricultural Consumer Electronics 2025-01-31
Show

Sustainable agriculture plays a crucial role in ensuring world food security for consumers. A critical challenge faced by sustainable precision agriculture is weed growth, as weeds share essential resources with the crops, such as water, soil nutrients, and sunlight, which notably affect crop yields. The traditional methods employed to combat weeds include the usage of chemical herbicides and manual weed removal methods. However, these could damage the environment and pose health hazards. The adoption of automated computer vision technologies and ground agricultural consumer electronic vehicles in precision agriculture offers sustainable, low-carbon solutions. However, prior works suffer from issues such as low accuracy and precision and high computational expense. This work proposes EcoWeedNet, a novel model with enhanced weed detection performance without adding significant computational complexity, aligning with the goals of low-carbon agricultural practices. Additionally, our model is lightweight and optimal for deployment on ground-based consumer electronic agricultural vehicles and robots. The effectiveness of the proposed model is demonstrated through comprehensive experiments on the CottonWeedDet12 benchmark dataset reflecting real-world scenarios. EcoWeedNet achieves performance close to that of large models yet with much fewer parameters. (approximately 4.21% of the parameters and 6.59% of the GFLOPs of YOLOv4). This work contributes effectively to the development of automated weed detection methods for next-generation agricultural consumer electronics featuring lower energy consumption and lower carbon footprint. This work paves the way forward for sustainable agricultural consumer technologies.

Agricultural Industry Initiatives on Autonomy: How collaborative initiatives of VDMA and AEF can facilitate complexity in domain crossing harmonization needs 2025-01-29
Show

The agricultural industry is undergoing a significant transformation with the increasing adoption of autonomous technologies. Addressing complex challenges related to safety and security, components and validation procedures, and liability distribution is essential to facilitate the adoption of autonomous technologies. This paper explores the collaborative groups and initiatives undertaken to address these challenges. These groups investigate inter alia three focal topics: 1) describe the functional architecture of the operational range, 2) define the work context, i.e., the realistic scenarios that emerge in various agricultural applications, and 3) the static and dynamic detection cases that need to be detected by sensor sets. Linked by the Agricultural Operational Design Domain (Agri-ODD), use case descriptions, risk analysis, and questions of liability can be handled. By providing an overview of these collaborative initiatives, this paper aims to highlight the joint development of autonomous agricultural systems that enhance the overall efficiency of farming operations.

7 pages, 1 figure
Efficient and Safe Trajectory Planning for Autonomous Agricultural Vehicle Headland Turning in Cluttered Orchard Environments 2025-01-18
Show

Autonomous agricultural vehicles (AAVs), including field robots and autonomous tractors, are becoming essential in modern farming by improving efficiency and reducing labor costs. A critical task in AAV operations is headland turning between crop rows. This task is challenging in orchards with limited headland space, irregular boundaries, operational constraints, and static obstacles. While traditional trajectory planning methods work well in arable farming, they often fail in cluttered orchard environments. This letter presents a novel trajectory planner that enhances the safety and efficiency of AAV headland maneuvers, leveraging advancements in autonomous driving. Our approach includes an efficient front-end algorithm and a high-performance back-end optimization. Applied to vehicles with various implements, it outperforms state-of-the-art methods in both standard and challenging orchard fields. This work bridges agricultural and autonomous driving technologies, facilitating a broader adoption of AAVs in complex orchards.

Empowering Agricultural Insights: RiceLeafBD -- A Novel Dataset and Optimal Model Selection for Rice Leaf Disease Diagnosis through Transfer Learning Technique 2025-01-15
Show

The number of people living in this agricultural nation of ours, which is surrounded by lush greenery, is growing on a daily basis. As a result of this, the level of arable land is decreasing, as well as residential houses and industrial factories. The food crisis is becoming the main threat for us in the upcoming days. Because on the one hand, the population is increasing, and on the other hand, the amount of food crop production is decreasing due to the attack of diseases. Rice is one of the most significant cultivated crops since it provides food for more than half of the world's population. Bangladesh is dependent on rice (Oryza sativa) as a vital crop for its agriculture, but it faces a significant problem as a result of the ongoing decline in rice yield brought on by common diseases. Early disease detection is the main difficulty in rice crop cultivation. In this paper, we proposed our own dataset, which was collected from the Bangladesh field, and also applied deep learning and transfer learning models for the evaluation of the datasets. We elaborately explain our dataset and also give direction for further research work to serve society using this dataset. We applied a light CNN model and pre-trained InceptionNet-V2, EfficientNet-V2, and MobileNet-V2 models, which achieved 91.5% performance for the EfficientNet-V2 model of this work. The results obtained assaulted other models and even exceeded approaches that are considered to be part of the state of the art. It has been demonstrated by this study that it is possible to precisely and effectively identify diseases that affect rice leaves using this unbiased datasets. After analysis of the performance of different models, the proposed datasets are significant for the society for research work to provide solutions for decreasing rice leaf disease.

A systematic review of the use of Deep Learning in Satellite Imagery for Agriculture 2025-01-14
Show

Agricultural research is essential for increasing food production to meet the requirements of an increasing population in the coming decades. Recently, satellite technology has been improving rapidly and deep learning has seen much success in generic computer vision tasks and many application areas which presents an important opportunity to improve analysis of agricultural land. Here we present a systematic review of 150 studies to find the current uses of deep learning on satellite imagery for agricultural research. Although we identify 5 categories of agricultural monitoring tasks, the majority of the research interest is in crop segmentation and yield prediction. We found that, when used, modern deep learning methods consistently outperformed traditional machine learning across most tasks; the only exception was that Long Short-Term Memory (LSTM) Recurrent Neural Networks did not consistently outperform Random Forests (RF) for yield prediction. The reviewed studies have largely adopted methodologies from generic computer vision, except for one major omission: benchmark datasets are not utilised to evaluate models across studies, making it difficult to compare results. Additionally, some studies have specifically utilised the extra spectral resolution available in satellite imagery, but other divergent properties of satellite images - such as the hugely different scales of spatial patterns - are not being taken advantage of in the reviewed studies.

23 pa...

23 pages, 5 figures and 10 tables in main paper. Final version, as submitted and accepted at JSTARS

AgroGPT: Efficient Agricultural Vision-Language Model with Expert Tuning 2025-01-09
Show

Significant progress has been made in advancing large multimodal conversational models (LMMs), capitalizing on vast repositories of image-text data available online. Despite this progress, these models often encounter substantial domain gaps, hindering their ability to engage in complex conversations across new domains. Recent efforts have aimed to mitigate this issue, albeit relying on domain-specific image-text data to curate instruction-tuning data. However, many domains, such as agriculture, lack such vision-language data. In this work, we propose an approach to construct instruction-tuning data that harnesses vision-only data for the agriculture domain. We utilize diverse agricultural datasets spanning multiple domains, curate class-specific information, and employ large language models (LLMs) to construct an expert-tuning set, resulting in a 70k expert-tuning dataset called AgroInstruct. Subsequently, we expert-tuned and created AgroGPT, an efficient LMM that can hold complex agriculture-related conversations and provide useful insights. We also develop AgroEvals for evaluation and compare {AgroGPT's} performance with large open and closed-source models. {AgroGPT} excels at identifying fine-grained agricultural concepts, can act as an agriculture expert, and provides helpful information for multimodal agriculture questions. The code, datasets, and models are available at https://github.com/awaisrauf/agroGPT.

Accep...

Accepted at WACV, 2025

Coverage Path Planning in Precision Agriculture: Algorithms, Applications, and Key Benefits 2025-01-08
Show

Coverage path planning (CPP) is the task of computing an optimal path within a region to completely scan or survey an area of interest using one or multiple mobile robots. Robots equipped with sensors and cameras can collect vast amounts of data on crop health, soil conditions, and weather patterns. Advanced analytics can then be applied to this data to make informed decisions, improving overall farm management. In this paper, we will demonstrate one approach to find the optimal coverage path of an agricultural field using a single robot, and one using multiple robots. For the single robot, we used a wavefront coverage algorithm that generates a sequence of locations that the robot needs to follow. For the multi-robot approach, the proposed approach consists of two steps: dividing the agricultural field into convex polygonal areas to optimally distribute them among the robots, and generating an optimal coverage path to ensure minimum coverage time for each of the polygonal areas.

The c...

The co-authors have asked to withdraw this paper, since it contains incomplete and incorrect informations

Autonomous Navigation of 4WIS4WID Agricultural Field Mobile Robot using Deep Reinforcement Learning 2024-12-25
Show

In the futuristic agricultural fields compatible with Agriculture 4.0, robots are envisaged to navigate through crops to perform functions like pesticide spraying and fruit harvesting, which are complex tasks due to factors such as non-geometric internal obstacles, space constraints, and outdoor conditions. In this paper, we attempt to employ Deep Reinforcement Learning (DRL) to solve the problem of 4WIS4WID mobile robot navigation in a structured, automated agricultural field. This paper consists of three sections: parameterization of four-wheel steering configurations, crop row tracking using DRL, and autonomous navigation of 4WIS4WID mobile robot using DRL through multiple crop rows. We show how to parametrize various configurations of four-wheel steering to two variables. This includes symmetric four-wheel steering, zero-turn, and an additional steering configuration that allows the 4WIS4WID mobile robot to move laterally. Using DRL, we also followed an irregularly shaped crop row with symmetric four-wheel steering. In the multiple crop row simulation environment, with the help of waypoints, we effectively performed point-to-point navigation. Finally, a comparative analysis of various DRL algorithms that use continuous actions was carried out.

Geographic distribution of the global agricultural workforce every decade for the years 2000-2100 2024-12-23
Show

Agricultural workers play a vital role in the global economy and food security by cultivating, transporting, and processing food for populations worldwide. Despite their importance, detailed spatial data on the global agricultural workforce have remained scarce. Here, we present a new gridded dataset that maps the global distribution of agricultural workers for every decade over the years 2000-2100, distributed at 0.083$\times$0.083 degrees resolution, roughly $\sim$10km$\times$10km at the Equator. The dataset is developed using an empirical modeling framework relying on generalized additive mixed models (GAMMs) that integrate socioeconomic variables, including gross domestic product per capita, total population, rural population size, and agricultural land use. The predictions are consistent with Shared Socio-economic Pathways and we distribute full time series data for all SSPs 1 to 5. This dataset opens new avenues for future research on labour force health, productivity and risk, and could be very useful for developing informed, forward-looking strategies that address the challenges of climate resilience in agriculture. The dataset and code for reproducing it are available for the user community [publicly available on publication at DOI: 10.5281/zenodo.14443333].

Edge-AI for Agriculture: Lightweight Vision Models for Disease Detection in Resource-Limited Settings 2024-12-23
Show

This research paper presents the development of a lightweight and efficient computer vision pipeline aimed at assisting farmers in detecting orange diseases using minimal resources. The proposed system integrates advanced object detection, classification, and segmentation models, optimized for deployment on edge devices, ensuring functionality in resource-limited environments. The study evaluates the performance of various state-of-the-art models, focusing on their accuracy, computational efficiency, and generalization capabilities. Notable findings include the Vision Transformer achieving 96 accuracy in orange species classification and the lightweight YOLOv8-S model demonstrating exceptional object detection performance with minimal computational overhead. The research highlights the potential of modern deep learning architectures to address critical agricultural challenges, emphasizing the importance of model complexity versus practical utility. Future work will explore expanding datasets, model compression techniques, and federated learning to enhance the applicability of these systems in diverse agricultural contexts, ultimately contributing to more sustainable farming practices.

Integration of IoT- AI powered local weather forecasting: A Game-Changer for Agriculture 2024-12-22
Show

The dynamic environment context necessitates harnessing digital technologies, including artificial intelligence and the Internet of Things, to supply high-resolution, real-time meteorological data to support agricultural decision-making and improve overall farm productivity and sustainability. This study investigates the potential application of various AI-powered, IoT-based, low-cost platforms for local weather forecasting to enable smart farming. Despite the increasing demand for this topic, a few promising studies have explored this area. This paper developed a conceptual research framework based on a systematic review of relevant literature and employed a case study method to validate the framework. The framework comprised five key components: the Data Acquisition Layer, Data Storage Layer, Data Processing Layer, Application Layer, and Decision-Making Layer. This paper contributes to the literature by exploring the integration of AI-ML and IoT techniques for weather prediction tasks to support agriculture, and the incorporation of IoT technologies that provide real-time, high-resolution meteorological data, representing a step forward. Furthermore, this paper discusses key research gaps, such as the significant obstacles impeding the adoption of AI in agriculture and local weather forecasting, including the lack of straightforward solutions and the lack of digital skills among farmers, particularly those in rural areas. Further empirical research is needed to enhance the existing frameworks and address these challenges.

14 pa...

14 pages, 1 figure, One table

AgriBench: A Hierarchical Agriculture Benchmark for Multimodal Large Language Models 2024-12-21
Show

We introduce AgriBench, the first agriculture benchmark designed to evaluate MultiModal Large Language Models (MM-LLMs) for agriculture applications. To further address the agriculture knowledge-based dataset limitation problem, we propose MM-LUCAS, a multimodal agriculture dataset, that includes 1,784 landscape images, segmentation masks, depth maps, and detailed annotations (geographical location, country, date, land cover and land use taxonomic details, quality scores, aesthetic scores, etc), based on the Land Use/Cover Area Frame Survey (LUCAS) dataset, which contains comparable statistics on land use and land cover for the European Union (EU) territory. This work presents a groundbreaking perspective in advancing agriculture MM-LLMs and is still in progress, offering valuable insights for future developments and innovations in specific expert knowledge-based MM-LLMs.

Accep...

Accepted by CVPPA @ECCV2024. Dataset: https://github.com/Yutong-Zhou-cv/AgriBench

Fields of The World: A Machine Learning Benchmark Dataset For Global Agricultural Field Boundary Segmentation 2024-12-19
Show

Crop field boundaries are foundational datasets for agricultural monitoring and assessments but are expensive to collect manually. Machine learning (ML) methods for automatically extracting field boundaries from remotely sensed images could help realize the demand for these datasets at a global scale. However, current ML methods for field instance segmentation lack sufficient geographic coverage, accuracy, and generalization capabilities. Further, research on improving ML methods is restricted by the lack of labeled datasets representing the diversity of global agricultural fields. We present Fields of The World (FTW) -- a novel ML benchmark dataset for agricultural field instance segmentation spanning 24 countries on four continents (Europe, Africa, Asia, and South America). FTW is an order of magnitude larger than previous datasets with 70,462 samples, each containing instance and semantic segmentation masks paired with multi-date, multi-spectral Sentinel-2 satellite images. We provide results from baseline models for the new FTW benchmark, show that models trained on FTW have better zero-shot and fine-tuning performance in held-out countries than models that aren't pre-trained with diverse datasets, and show positive qualitative zero-shot results of FTW models in a real-world scenario -- running on Sentinel-2 scenes over Ethiopia.

Accep...

Accepted at the AAAI-2025 Artificial Intelligence for Social Impact (AISI) track

Bayesian nonparametric partial clustering: Quantifying the effectiveness of agricultural subsidies across Europe 2024-12-17
Show

The global climate has underscored the need for effective policies to reduce greenhouse gas emissions from all sources, including those resulting from agricultural expansion, which is regulated by the Common Agricultural Policy (CAP) across the European Union (EU). To assess the effectiveness of these mitigation policies, statistical methods must account for the heterogeneous impact of policies across different countries. We propose a Bayesian approach that combines the multinomial logit model, which is suitable for compositional land-use data, with a Bayesian nonparametric (BNP) prior to cluster regions with similar policy impacts. To simultaneously control for other relevant factors, we distinguish between cluster-specific and global covariates, coining this approach the Bayesian nonparametric partial clustering model. We develop a novel and efficient Markov Chain Monte Carlo (MCMC) algorithm, leveraging recent advances in the Bayesian literature. Using economic, geographic, and subsidy-related data from 22 EU member states, we examine the effectiveness of policies influencing land-use decisions across Europe and highlight the diversity of the problem. Our results indicate that the impact of CAP varies widely across the EU, emphasizing the need for subsidies to be tailored to optimize their effectiveness.

AgroXAI: Explainable AI-Driven Crop Recommendation System for Agriculture 4.0 2024-12-16
Show

Today, crop diversification in agriculture is a critical issue to meet the increasing demand for food and improve food safety and quality. This issue is considered to be the most important challenge for the next generation of agriculture due to the diminishing natural resources, the limited arable land, and unpredictable climatic conditions caused by climate change. In this paper, we employ emerging technologies such as the Internet of Things (IoT), machine learning (ML), and explainable artificial intelligence (XAI) to improve operational efficiency and productivity in the agricultural sector. Specifically, we propose an edge computing-based explainable crop recommendation system, AgroXAI, which suggests suitable crops for a region based on weather and soil conditions. In this system, we provide local and global explanations of ML model decisions with methods such as ELI5, LIME, SHAP, which we integrate into ML models. More importantly, we provide regional alternative crop recommendations with the counterfactual explainability method. In this way, we envision that our proposed AgroXAI system will be a platform that provides regional crop diversity in the next generation agriculture.

Accep...

Accepted in 2024 IEEE International Conference on Big Data (IEEE BigData), 10 pages, 9 Figures, 5 Tables

Agro-STAY : Collecte de données et analyse des informations en agriculture alternative issues de YouTube 2024-12-13
Show

To address the current crises (climatic, social, economic), the self-sufficiency -- a set of practices that combine energy sobriety, self-production of food and energy, and self-construction - arouses an increasing interest. The CNRS STAY project (Savoirs Techniques pour l'Auto-suffisance, sur YouTube) explores this topic by analyzing techniques shared on YouTube. We present Agro-STAY, a platform designed for the collection, processing, and visualization of data from YouTube videos and their comments. We use Natural Language Processing (NLP) techniques and language models, which enable a fine-grained analysis of alternative agricultural practice described online. -- Face aux crises actuelles (climatiques, sociales, 'economiques), l'auto-suffisance -- ensemble de pratiques combinant sobri'et'e 'energ'etique, autoproduction alimentaire et 'energ'etique et autoconstruction - suscite un int'er^et croissant. Le projet CNRS STAY (Savoirs Techniques pour l'Auto-suffisance, sur YouTube) s'inscrit dans ce domaine en analysant les savoirs techniques diffus'es sur YouTube. Nous pr'esentons Agro-STAY, une plateforme d'edi'ee `a la collecte, au traitement et `a la visualisation de donn'ees issues de vid'eos YouTube et de leurs commentaires. En mobilisant des techniques de traitement automatique des langues (TAL) et des mod`eles de langues, ce travail permet une analyse fine des pratiques agricoles alternatives d'ecrites en ligne.

8 pag...

8 pages, in French language, 3 figures

Immersive Human-Machine Teleoperation Framework for Precision Agriculture: Integrating UAV-based Digital Mapping and Virtual Reality Control 2024-12-06
Show

In agricultural settings, the unstructured nature of certain production environments, along with the high complexity and inherent risks of production tasks, poses significant challenges to achieving full automation and effective on-site machine control. Remote control technology, which leverages human intelligence and precise machine movements, ensures operator safety and boosts productivity. Recently, virtual reality (VR) has shown promise in remote control applications by overcoming single-view limitations and providing three-dimensional information, yet most studies have not focused on agricultural settings. Therefore, to bridge the gap, this study proposes a large-scale digital mapping and immersive human-machine teleoperation framework specifically designed for precision agriculture. In this research, a DJI unmanned aerial vehicle (UAV) was utilized for data collection, and a novel video segmentation approach based on feature points was introduced. To accommodate the variability of complex textures, this method proposes an enhanced Structure from Motion (SfM) approach. It integrates the open Multiple View Geometry (OpenMVG) framework with Local Features from Transformers (LoFTR). The enhanced SfM produces a point cloud map, which is further processed through Multi-View Stereo (MVS) to generate a complete map model. For control, a closed-loop system utilizing TCP/IP for VR control and positioning of agricultural machinery was introduced. This system offers a fully visual-based method for immersive control, allowing operators to utilize VR technology for remote operations. The experimental results demonstrate that the user-friendly remote control method also showcases its advantages over traditional video streaming-based remote operations, providing operators with a more comprehensive and immersive experience and a higher level of situational awareness.

30 pa...

30 pages, 9 Figures, 2 Tables

Agri-LLaVA: Knowledge-Infused Large Multimodal Assistant on Agricultural Pests and Diseases 2024-12-04
Show

In the general domain, large multimodal models (LMMs) have achieved significant advancements, yet challenges persist in applying them to specific fields, especially agriculture. As the backbone of the global economy, agriculture confronts numerous challenges, with pests and diseases being particularly concerning due to their complexity, variability, rapid spread, and high resistance. This paper specifically addresses these issues. We construct the first multimodal instruction-following dataset in the agricultural domain, covering over 221 types of pests and diseases with approximately 400,000 data entries. This dataset aims to explore and address the unique challenges in pest and disease control. Based on this dataset, we propose a knowledge-infused training method to develop Agri-LLaVA, an agricultural multimodal conversation system. To accelerate progress in this field and inspire more researchers to engage, we design a diverse and challenging evaluation benchmark for agricultural pests and diseases. Experimental results demonstrate that Agri-LLaVA excels in agricultural multimodal conversation and visual understanding, providing new insights and approaches to address agricultural pests and diseases. By open-sourcing our dataset and model, we aim to promote research and development in LMMs within the agricultural domain and make significant contributions to tackle the challenges of agricultural pests and diseases. All resources can be found at https://github.com/Kki2Eve/Agri-LLaVA.

Adaptive LiDAR Odometry and Mapping for Autonomous Agricultural Mobile Robots in Unmanned Farms 2024-12-03
Show

Unmanned and intelligent agricultural systems are crucial for enhancing agricultural efficiency and for helping mitigate the effect of labor shortage. However, unlike urban environments, agricultural fields impose distinct and unique challenges on autonomous robotic systems, such as the unstructured and dynamic nature of the environment, the rough and uneven terrain, and the resulting non-smooth robot motion. To address these challenges, this work introduces an adaptive LiDAR odometry and mapping framework tailored for autonomous agricultural mobile robots operating in complex agricultural environments. The proposed framework consists of a robust LiDAR odometry algorithm based on dense Generalized-ICP scan matching, and an adaptive mapping module that considers motion stability and point cloud consistency for selective map updates. The key design principle of this framework is to prioritize the incremental consistency of the map by rejecting motion-distorted points and sparse dynamic objects, which in turn leads to high accuracy in odometry estimated from scan matching against the map. The effectiveness of the proposed method is validated via extensive evaluation against state-of-the-art methods on field datasets collected in real-world agricultural environments featuring various planting types, terrain types, and robot motion profiles. Results demonstrate that our method can achieve accurate odometry estimation and mapping results consistently and robustly across diverse agricultural settings, whereas other methods are sensitive to abrupt robot motion and accumulated drift in unstructured environments. Further, the computational efficiency of our method is competitive compared with other methods. The source code of the developed method and the associated field dataset are publicly available at https://github.com/UCR-Robotics/AG-LOAM.

Enabling Adoption of Regenerative Agriculture through Soil Carbon Copilots 2024-11-27
Show

Mitigating climate change requires transforming agriculture to minimize environ mental impact and build climate resilience. Regenerative agricultural practices enhance soil organic carbon (SOC) levels, thus improving soil health and sequestering carbon. A challenge to increasing regenerative agriculture practices is cheaply measuring SOC over time and understanding how SOC is affected by regenerative agricultural practices and other environmental factors and farm management practices. To address this challenge, we introduce an AI-driven Soil Organic Carbon Copilot that automates the ingestion of complex multi-resolution, multi-modal data to provide large-scale insights into soil health and regenerative practices. Our data includes extreme weather event data (e.g., drought and wildfire incidents), farm management data (e.g., cropland information and tillage predictions), and SOC predictions. We find that integrating public data and specialized models enables large-scale, localized analysis for sustainable agriculture. In comparisons of agricultural practices across California counties, we find evidence that diverse agricultural activity may mitigate the negative effects of tillage; and that while extreme weather conditions heavily affect SOC, composting may mitigate SOC loss. Finally, implementing role-specific personas empowers agronomists, farm consultants, policymakers, and other stakeholders to implement evidence-based strategies that promote sustainable agriculture and build climate resilience.

Path Tracking Hybrid A* For Autonomous Agricultural Vehicles 2024-11-21
Show

We propose a path-tracking Hybrid A* planner and a coupled hierarchical Model Predictive Control (MPC) controller in scenarios involving the path smoothing of agricultural vehicles. For agricultural vehicles following reference paths on farmlands, especially during cross-furrow operations, a minimum deviation from the reference path is desired, in addition to the curvature constraints and body scale collision avoidance. Our contribution is threefold. (1) We propose the path-tracking Hybrid A*, which satisfies nonholonomic constraints and vehicle size collision avoidance, and devise new cost and heuristic functions to minimize the deviation degree. The path-tracking Hybrid A* can not only function in offline smoothing but also the real-time adjustment when confronted with unexpected obstacles. (2) We propose the hierarchical MPC to safely track the smoothed trajectory, using the initial solution solved by linearized MPC and nonlinear local adjustments around the initial solution. (3) We carry out extensive simulations with baseline comparisons based on real-world farm datasets to evaluate the performance of our algorithm.

An Integrated (Crop Model, Cloud and Big Data Analytic) Framework to support Agriculture Activity Monitoring System 2024-11-19
Show

Agriculture activity monitoring needs to deal with large amounts of data originating from various organizations (weather stations, agriculture repositories, field management, farm management, universities, etc.) and mass people. Therefore, a scalable environment with flexible information access, easy communication, and real-time collaboration from all types of computing devices, including mobile handheld devices such as smartphones, PDAs and iPads, Geo-sensor devices, etc. are essential. The system must be accessible, scalable, and transparent from location, migration, and resources. In addition, the framework should support modern information retrieval and management systems, unstructured information to structured information processing, task prioritization, task distribution, workflow and task scheduling systems, processing power, and data storage. Thus, High Scalability Computing (HSC) or Cloud-based systems with Big data analytics can be a prominent and convincing solution for this circumstance. In this paper, we are going to propose an integrated (crop model, cloud, and big data analytics) geo-information framework to support agriculture activity monitoring systems.

Autonomous Robotic Pepper Harvesting: Imitation Learning in Unstructured Agricultural Environments 2024-11-15
Show

Automating tasks in outdoor agricultural fields poses significant challenges due to environmental variability, unstructured terrain, and diverse crop characteristics. We present a robotic system for autonomous pepper harvesting designed to operate in these unprotected, complex settings. Utilizing a custom handheld shear-gripper, we collected 300 demonstrations to train a visuomotor policy, enabling the system to adapt to varying field conditions and crop diversity. We achieved a success rate of 28.95% with a cycle time of 31.71 seconds, comparable to existing systems tested under more controlled conditions like greenhouses. Our system demonstrates the feasibility and effectiveness of leveraging imitation learning for automated harvesting in unstructured agricultural environments. This work aims to advance scalable, automated robotic solutions for agriculture in natural settings.

8 pages, 11 figures
Agricultural Landscape Understanding At Country-Scale 2024-11-08
Show

Agricultural landscapes are quite complex, especially in the Global South where fields are smaller, and agricultural practices are more varied. In this paper we report on our progress in digitizing the agricultural landscape (natural and man-made) in our study region of India. We use high resolution imagery and a UNet style segmentation model to generate the first of its kind national-scale multi-class panoptic segmentation output. Through this work we have been able to identify individual fields across 151.7M hectares, and delineating key features such as water resources and vegetation. We share how this output was validated by our team and externally by downstream users, including some sample use cases that can lead to targeted data driven decision making. We believe this dataset will contribute towards digitizing agriculture by generating the foundational baselayer.

34 pa...

34 pages, 7 tables, 15 figs

SynthSet: Generative Diffusion Model for Semantic Segmentation in Precision Agriculture 2024-11-05
Show

This paper introduces a methodology for generating synthetic annotated data to address data scarcity in semantic segmentation tasks within the precision agriculture domain. Utilizing Denoising Diffusion Probabilistic Models (DDPMs) and Generative Adversarial Networks (GANs), we propose a dual diffusion model architecture for synthesizing realistic annotated agricultural data, without any human intervention. We employ super-resolution to enhance the phenotypic characteristics of the synthesized images and their coherence with the corresponding generated masks. We showcase the utility of the proposed method for wheat head segmentation. The high quality of synthesized data underscores the effectiveness of the proposed methodology in generating image-mask pairs. Furthermore, models trained on our generated data exhibit promising performance when tested on an external, diverse dataset of real wheat fields. The results show the efficacy of the proposed methodology for addressing data scarcity for semantic segmentation tasks. Moreover, the proposed approach can be readily adapted for various segmentation tasks in precision agriculture and beyond.

Transforming Agriculture: Exploring Diverse Practices and Technological Innovations 2024-11-01
Show

Agriculture is a vital sector that significantly contributes to the economy and food security, particularly in regions like Varanasi, India. This paper explores various types of agriculture practiced in the area, including subsistence, commercial, intensive, extensive, industrial, organic, agroforestry, aquaculture, and urban agriculture. Each type presents unique challenges and opportunities, necessitating innovative approaches to enhance productivity and sustainability. To address these challenges, the integration of advanced technologies such as sensors and communication protocols is essential. Sensors can provide real-time data on soil health, moisture levels, and crop conditions, enabling farmers to make informed decisions. Communication technologies facilitate the seamless transfer of this data, allowing for timely interventions and optimized resource management. Moreover, programming techniques play a crucial role in developing applications that process and analyze agricultural data. By leveraging machine learning algorithms, farmers can gain insights into crop performance, predict yields, and implement precision agriculture practices. This paper highlights the significance of combining traditional agricultural practices with modern technologies to create a resilient agricultural ecosystem. The findings underscore the potential of integrating sensors, communication technologies, and programming in transforming agricultural practices in Varanasi. By fostering a data-driven approach, this research aims to contribute to sustainable farming, enhance food security, and improve the livelihoods of farmers in the region.

Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis 2024-10-31
Show

Current agricultural data management and analysis paradigms are to large extent traditional, in which data collecting, curating, integration, loading, storing, sharing and analyzing still involve too much human effort and know-how. The experts, researchers and the farm operators need to understand the data and the whole process of data management pipeline to make fully use of the data. The essential problem of the traditional paradigm is the lack of a layer of orchestrational intelligence which can understand, organize and coordinate the data processing utilities to maximize data management and analysis outcome. The emerging reasoning and tool mastering abilities of large language models (LLM) make it a potentially good fit to this position, which helps a shift from the traditional user-driven paradigm to AI-driven paradigm. In this paper, we propose and explore the idea of a LLM based copilot for autonomous agricultural data management and analysis. Based on our previously developed platform of Agricultural Data Management and Analytics (ADMA), we build a proof-of-concept multi-agent system called ADMA Copilot, which can understand user's intent, makes plans for data processing pipeline and accomplishes tasks automatically, in which three agents: a LLM based controller, an input formatter and an output formatter collaborate together. Different from existing LLM based solutions, by defining a meta-program graph, our work decouples control flow and data flow to enhance the predictability of the behaviour of the agents. Experiments demonstrates the intelligence, autonomy, efficacy, efficiency, extensibility, flexibility and privacy of our system. Comparison is also made between ours and existing systems to show the superiority and potential of our system.

HarvestTech agriculture cooperatives: Beneficiaries and compensations 2024-10-31
Show

Agricultural industries face increasing pressure to optimize efficiency and reduce costs in a competitive and resource-constrained global market. As firms seek innovative ways to enhance productivity, cooperative strategies have emerged as a promising solution to address these challenges. In this context, game theory provides a powerful framework for analyzing and structuring such cooperative efforts, ensuring that each firm's contribution is fairly rewarded. This paper presents an innovative approach to address challenges in agricultural crop processing through inter-firm cooperation. A new class of totally balanced games is introduced, which models the strategic interactions among companies processing agricultural products. The objective is to identify profit allocations that fairly compensate firms contributing to cost reduction and surplus processing for others. To achieve this, the allocations resulting from each type of compensation will be thoroughly examined, and a coalitionally stable compensation procedure will be established. The study demonstrates the feasibility and effectiveness of cooperative strategies for optimizing agricultural processes. Lastly, the findings will be applied to a case study.

From Web Data to Real Fields: Low-Cost Unsupervised Domain Adaptation for Agricultural Robots 2024-10-31
Show

In precision agriculture, vision models often struggle with new, unseen fields where crops and weeds have been influenced by external factors, resulting in compositions and appearances that differ from the learned distribution. This paper aims to adapt to specific fields at low cost using Unsupervised Domain Adaptation (UDA). We explore a novel domain shift from a diverse, large pool of internet-sourced data to a small set of data collected by a robot at specific locations, minimizing the need for extensive on-field data collection. Additionally, we introduce a novel module -- the Multi-level Attention-based Adversarial Discriminator (MAAD) -- which can be integrated at the feature extractor level of any detection model. In this study, we incorporate MAAD with CenterNet to simultaneously detect leaf, stem, and vein instances. Our results show significant performance improvements in the unlabeled target domain compared to baseline models, with a 7.5% increase in object detection accuracy and a 5.1% improvement in keypoint detection.

This ...

This work has been submitted to the IEEE for possible publication

The unrealized potential of agroforestry for an emissions-intensive agricultural commodity 2024-10-28
Show

Reconciling agricultural production with climate-change mitigation and adaptation is one of the most formidable problems in sustainability. One proposed strategy for addressing this problem is the judicious retention of trees in agricultural systems. However, the magnitude of the current and future-potential benefit that trees contribute remains uncertain, particularly in the agricultural sector where trees can also limit production. Here we help to resolve these issues across a West African region responsible for producing $\approx$60% of the world's cocoa, a crop that contributes one of the highest per unit carbon footprints of all foods. We use machine learning to generate spatially-explicit estimates of shade-tree cover and carbon stocks across the region. We find that existing shade-tree cover is low, and not spatially aligned with climate threat. But we also find enormous unrealized potential for the sector to counterbalance a large proportion of their high carbon footprint annually, without threatening production. Our methods can be applied to other globally significant commodities that can be grown in agroforests, and align with accounting requirements of carbon markets, and emerging legislative requirements for sustainability reporting.

KisanQRS: A Deep Learning-based Automated Query-Response System for Agricultural Decision-Making 2024-10-26
Show

Delivering prompt information and guidance to farmers is critical in agricultural decision-making. Farmers helpline centres are heavily reliant on the expertise and availability of call centre agents, leading to inconsistent quality and delayed responses. To this end, this article presents Kisan Query Response System (KisanQRS), a Deep Learning-based robust query-response framework for the agriculture sector. KisanQRS integrates semantic and lexical similarities of farmers queries and employs a rapid threshold-based clustering method. The clustering algorithm is based on a linear search technique to iterate through all queries and organize them into clusters according to their similarity. For query mapping, LSTM is found to be the optimal method. Our proposed answer retrieval method clusters candidate answers for a crop, ranks these answer clusters based on the number of answers in a cluster, and selects the leader of each cluster. The dataset used in our analysis consists of a subset of 34 million call logs from the Kisan Call Centre (KCC), operated under the Government of India. We evaluated the performance of the query mapping module on the data of five major states of India with 3,00,000 samples and the quantifiable outcomes demonstrate that KisanQRS significantly outperforms traditional techniques by achieving 96.58% top F1-score for a state. The answer retrieval module is evaluated on 10,000 samples and it achieves a competitive NDCG score of 96.20%. KisanQRS is useful in enabling farmers to make informed decisions about their farming practices by providing quick and pertinent responses to their queries.

RAFA-Net: Region Attention Network For Food Items And Agricultural Stress Recognition 2024-10-16
Show

Deep Convolutional Neural Networks (CNNs) have facilitated remarkable success in recognizing various food items and agricultural stress. A decent performance boost has been witnessed in solving the agro-food challenges by mining and analyzing of region-based partial feature descriptors. Also, computationally expensive ensemble learning schemes using multiple CNNs have been studied in earlier works. This work proposes a region attention scheme for modelling long-range dependencies by building a correlation among different regions within an input image. The attention method enhances feature representation by learning the usefulness of context information from complementary regions. Spatial pyramidal pooling and average pooling pair aggregate partial descriptors into a holistic representation. Both pooling methods establish spatial and channel-wise relationships without incurring extra parameters. A context gating scheme is applied to refine the descriptiveness of weighted attentional features, which is relevant for classification. The proposed Region Attention network for Food items and Agricultural stress recognition method, dubbed RAFA-Net, has been experimented on three public food datasets, and has achieved state-of-the-art performances with distinct margins. The highest top-1 accuracies of RAFA-Net are 91.69%, 91.56%, and 96.97% on the UECFood-100, UECFood-256, and MAFood-121 datasets, respectively. In addition, better accuracies have been achieved on two benchmark agricultural stress datasets. The best top-1 accuracies on the Insect Pest (IP-102) and PlantDoc-27 plant disease datasets are 92.36%, and 85.54%, respectively; implying RAFA-Net's generalization capability.

Fusion-Driven Tree Reconstruction and Fruit Localization: Advancing Precision in Agriculture 2024-10-14
Show

Fruit distribution is pivotal in shaping the future of both agriculture and agricultural robotics, paving the way for a streamlined supply chain. This study introduces an innovative methodology that harnesses the synergy of RGB imagery, LiDAR, and IMU data, to achieve intricate tree reconstructions and the pinpoint localization of fruits. Such integration not only offers insights into the fruit distribution, which enhances the precision of guidance for agricultural robotics and automation systems, but also sets the stage for simulating synthetic fruit patterns across varied tree architectures. To validate this approach, experiments have been carried out in both a controlled environment and an actual peach orchard. The results underscore the robustness and efficacy of this fusion-driven methodology, highlighting its potential as a transformative tool for future agricultural robotics and precision farming.

This ...

This work was presented at IEEE/RSI International Conference on Intelligent Robots and Systems (IROS) Workshop

Cost-Effective Cyber-Physical System Prototype for Precision Agriculture with a Focus on Crop Growth 2024-10-09
Show

In precision agriculture, integrating advanced technologies is crucial for optimizing plant growth and health monitoring. Cyber-physical system (CPS) platforms tailored to specific agricultural environments have emerged, but the diversity of these environments poses challenges in developing adaptive CPS platforms. This paper explores rapid prototyping methods to address these challenges, focusing on non-destructive techniques for estimating plant growth. We present a CPS prototype that combines sensors, microcontrollers, digital image processing, and predictive modeling to measure leaf area and biomass accumulation in hydroponic environments. Our results show that the prototype effectively monitors and predicts plant growth, highlighting the potential of rapid CPS prototyping in promoting sustainability and improving crop yields at a moderate cost of hardware.

To ap...

To appear in Proceedings of the 35th IEEE International Workshop on Rapid System Prototyping (RSP 2024)

Farmer.Chat: Scaling AI-Powered Agricultural Services for Smallholder Farmers 2024-10-08
Show

Small and medium-sized agricultural holders face challenges like limited access to localized, timely information, impacting productivity and sustainability. Traditional extension services, which rely on in-person agents, struggle with scalability and timely delivery, especially in remote areas. We introduce FarmerChat, a generative AI-powered chatbot designed to address these issues. Leveraging Generative AI, FarmerChat offers personalized, reliable, and contextually relevant advice, overcoming limitations of previous chatbots in deterministic dialogue flows, language support, and unstructured data processing. Deployed in four countries, FarmerChat has engaged over 15,000 farmers and answered over 300,000 queries. This paper highlights how FarmerChat's innovative use of GenAI enhances agricultural service scalability and effectiveness. Our evaluation, combining quantitative analysis and qualitative insights, highlights FarmerChat's effectiveness in improving farming practices, enhancing trust, response quality, and user engagement.

35 pages
AgriCLIP: Adapting CLIP for Agriculture and Livestock via Domain-Specialized Cross-Model Alignment 2024-10-02
Show

Capitalizing on vast amount of image-text data, large-scale vision-language pre-training has demonstrated remarkable zero-shot capabilities and has been utilized in several applications. However, models trained on general everyday web-crawled data often exhibit sub-optimal performance for specialized domains, likely due to domain shift. Recent works have tackled this problem for some domains (e.g., healthcare) by constructing domain-specialized image-text data. However, constructing a dedicated large-scale image-text dataset for sustainable area of agriculture and livestock is still open to research. Further, this domain desires fine-grained feature learning due to the subtle nature of the downstream tasks (e.g, nutrient deficiency detection, livestock breed classification). To address this we present AgriCLIP, a vision-language foundational model dedicated to the domain of agriculture and livestock. First, we propose a large-scale dataset, named ALive, that leverages customized prompt generation strategy to overcome the scarcity of expert annotations. Our ALive dataset covers crops, livestock, and fishery, with around 600,000 image-text pairs. Second, we propose a training pipeline that integrates both contrastive and self-supervised learning to learn both global semantic and local fine-grained domain-specialized features. Experiments on diverse set of 20 downstream tasks demonstrate the effectiveness of AgriCLIP framework, achieving an absolute gain of 7.8% in terms of average zero-shot classification accuracy, over the standard CLIP adaptation via domain-specialized ALive dataset. Our ALive dataset and code can be accessible at \href{https://github.com/umair1221/AgriCLIP/tree/main}{Github}.

Estimating The Carbon Footprint Of Digital Agriculture Deployment: A Parametric Bottom-Up Modelling Approach 2024-09-26
Show

Digitalization appears as a lever to enhance agriculture sustainability. However, existing works on digital agriculture's own sustainability remain scarce, disregarding the environmental effects of deploying digital devices on a large-scale. We propose a bottom-up method to estimate the carbon footprint of digital agriculture scenarios considering deployment of devices over a diversity of farm sizes. It is applied to two use-cases and demonstrates that digital agriculture encompasses a diversity of devices with heterogeneous carbon footprints and that more complex devices yield higher footprints not always compensated by better performances or scaling gains. By emphasizing the necessity of considering the multiplicity of devices, and the territorial distribution of farm sizes when modelling digital agriculture deployments, this study highlights the need for further exploration of the first-order effects of digital technologies in agriculture.

Journ...

Journal of Industrial Ecology, In press, 10.1111/jiec.13568

Sparsity, Regularization and Causality in Agricultural Yield: The Case of Paddy Rice in Peru 2024-09-25
Show

This study introduces a novel approach that integrates agricultural census data with remotely sensed time series to develop precise predictive models for paddy rice yield across various regions of Peru. By utilizing sparse regression and Elastic-Net regularization techniques, the study identifies causal relationships between key remotely sensed variables-such as NDVI, precipitation, and temperature-and agricultural yield. To further enhance prediction accuracy, the first- and second-order dynamic transformations (velocity and acceleration) of these variables are applied, capturing non-linear patterns and delayed effects on yield. The findings highlight the improved predictive performance when combining regularization techniques with climatic and geospatial variables, enabling more precise forecasts of yield variability. The results confirm the existence of causal relationships in the Granger sense, emphasizing the value of this methodology for strategic agricultural management. This contributes to more efficient and sustainable production in paddy rice cultivation.

Deep Learning for Precision Agriculture: Post-Spraying Evaluation and Deposition Estimation 2024-09-24
Show

Precision spraying evaluation requires automation primarily in post-spraying imagery. In this paper we propose an eXplainable Artificial Intelligence (XAI) computer vision pipeline to evaluate a precision spraying system post-spraying without the need for traditional agricultural methods. The developed system can semantically segment potential targets such as lettuce, chickweed, and meadowgrass and correctly identify if targets have been sprayed. Furthermore, this pipeline evaluates using a domain-specific Weakly Supervised Deposition Estimation task, allowing for class-specific quantification of spray deposit weights in {\mu}L. Estimation of coverage rates of spray deposition in a class-wise manner allows for further understanding of effectiveness of precision spraying systems. Our study evaluates different Class Activation Mapping techniques, namely AblationCAM and ScoreCAM, to determine which is more effective and interpretable for these tasks. In the pipeline, inference-only feature fusion is used to allow for further interpretability and to enable the automation of precision spraying evaluation post-spray. Our findings indicate that a Fully Convolutional Network with an EfficientNet-B0 backbone and inference-only feature fusion achieves an average absolute difference in deposition values of 156.8 {\mu}L across three classes in our test set. The dataset curated in this paper is publicly available at https://github.com/Harry-Rogers/PSIE

AgriNeRF: Neural Radiance Fields for Agriculture in Challenging Lighting Conditions 2024-09-23
Show

Neural Radiance Fields (NeRFs) have shown significant promise in 3D scene reconstruction and novel view synthesis. In agricultural settings, NeRFs can serve as digital twins, providing critical information about fruit detection for yield estimation and other important metrics for farmers. However, traditional NeRFs are not robust to challenging lighting conditions, such as low-light, extreme bright light and varying lighting. To address these issues, this work leverages three different sensors: an RGB camera, an event camera and a thermal camera. Our RGB scene reconstruction shows an improvement in PSNR and SSIM by +2.06 dB and +8.3% respectively. Our cross-spectral scene reconstruction enhances downstream fruit detection by +43.0% in mAP50 and +61.1% increase in mAP50-95. The integration of additional sensors leads to a more robust and informative NeRF. We demonstrate that our multi-modal system yields high quality photo-realistic reconstructions under various tree canopy covers and at different times of the day. This work results in the development of a resilient NeRF, capable of performing well in visibly degraded scenarios, as well as a learnt cross-spectral representation, that is used for automated fruit detection.

7 pages, 5 figures
2022 Flood Impact in Pakistan: Remote Sensing Assessment of Agricultural and Urban Damage 2024-09-21
Show

Pakistan was hit by the world's deadliest flood in June 2022, causing agriculture and infrastructure damage across the country. Remote sensing technology offers a cost-effective and efficient method for flood impact assessment. This study is aimed to assess the impact of flooding on crops and built-up areas. Landsat 9 imagery, European Space Agency-Land Use/Land Cover (ESA-LULC) and Soil Moisture Active Passive (SMAP) data are used to identify and quantify the extent of flood-affected areas, crop damage, and built-up area destruction. The findings indicate that Sindh, a province in Pakistan, suffered the most. This impact destroyed most Kharif season crops, typically cultivated from March to November. Using the SMAP satellite data, it is assessed that the high amount of soil moisture after flood also caused a significant delay in the cultivation of Rabi crops. The findings of this study provide valuable information for decision-makers and stakeholders involved in flood risk management and disaster response.

AAAI Symposium 2024
ShizishanGPT: An Agricultural Large Language Model Integrating Tools and Resources 2024-09-20
Show

Recent developments in large language models (LLMs) have led to significant improvements in intelligent dialogue systems'ability to handle complex inquiries. However, current LLMs still exhibit limitations in specialized domain knowledge, particularly in technical fields such as agriculture. To address this problem, we propose ShizishanGPT, an intelligent question answering system for agriculture based on the Retrieval Augmented Generation (RAG) framework and agent architecture. ShizishanGPT consists of five key modules: including a generic GPT-4 based module for answering general questions; a search engine module that compensates for the problem that the large language model's own knowledge cannot be updated in a timely manner; an agricultural knowledge graph module for providing domain facts; a retrieval module which uses RAG to supplement domain knowledge; and an agricultural agent module, which invokes specialized models for crop phenotype prediction, gene expression analysis, and so on. We evaluated the ShizishanGPT using a dataset containing 100 agricultural questions specially designed for this study. The experimental results show that the tool significantly outperforms general LLMs as it provides more accurate and detailed answers due to its modular design and integration of different domain knowledge sources. Our source code, dataset, and model weights are publicly available at https://github.com/Zaiwen/CropGPT.

15 pa...

15 pages,3 figures, WISE2024

Enhancing Agricultural Environment Perception via Active Vision and Zero-Shot Learning 2024-09-19
Show

Agriculture, fundamental for human sustenance, faces unprecedented challenges. The need for efficient, human-cooperative, and sustainable farming methods has never been greater. The core contributions of this work involve leveraging Active Vision (AV) techniques and Zero-Shot Learning (ZSL) to improve the robot's ability to perceive and interact with agricultural environment in the context of fruit harvesting. The AV Pipeline implemented within ROS 2 integrates the Next-Best View (NBV) Planning for 3D environment reconstruction through a dynamic 3D Occupancy Map. Our system allows the robotics arm to dynamically plan and move to the most informative viewpoints and explore the environment, updating the 3D reconstruction using semantic information produced through ZSL models. Simulation and real-world experimental results demonstrate our system's effectiveness in complex visibility conditions, outperforming traditional and static predefined planning methods. ZSL segmentation models employed, such as YOLO World + EfficientViT SAM, exhibit high-speed performance and accurate segmentation, allowing flexibility when dealing with semantic information in unknown agricultural contexts without requiring any fine-tuning process.

Advancing Cucumber Disease Detection in Agriculture through Machine Vision and Drone Technology 2024-09-18
Show

This study uses machine vision and drone technologies to propose a unique method for the diagnosis of cucumber disease in agriculture. The backbone of this research is a painstakingly curated dataset of hyperspectral photographs acquired under genuine field conditions. Unlike earlier datasets, this study included a wide variety of illness types, allowing for precise early-stage detection. The model achieves an excellent 87.5% accuracy in distinguishing eight unique cucumber illnesses after considerable data augmentation. The incorporation of drone technology for high-resolution images improves disease evaluation. This development has enormous potential for improving crop management, lowering labor costs, and increasing agricultural productivity. This research, which automates disease detection, represents a significant step toward a more efficient and sustainable agricultural future.

10 page and 6 figure
LoRa Communication for Agriculture 4.0: Opportunities, Challenges, and Future Directions 2024-09-17
Show

The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices. This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems. By reviewing existing literature, we identify a gap in research specifically focused on LoRa's prospects and challenges from a communication perspective in smart agriculture. We delve into the details of LoRa-based agricultural networks, covering network architecture design, Physical Layer (PHY) considerations tailored to the agricultural environment, and channel modeling techniques that account for soil characteristics. The paper further explores relaying and routing mechanisms that address the challenges of extending network coverage and optimizing data transmission in vast agricultural landscapes. Transitioning to practical aspects, we discuss sensor deployment strategies and energy management techniques, offering insights for real-world deployments. A comparative analysis of LoRa with other wireless communication technologies employed in agricultural IoT applications highlights its strengths and weaknesses in this context. Furthermore, the paper outlines several future research directions to leverage the potential of LoRa-based agriculture 4.0. These include advancements in channel modeling for diverse farming environments, novel relay routing algorithms, integrating emerging sensor technologies like hyper-spectral imaging and drone-based sensing, on-device Artificial Intelligence (AI) models, and sustainable solutions. This survey can guide researchers, technologists, and practitioners to understand, implement, and propel smart agriculture initiatives using LoRa technology.

Spatial Transformer Network YOLO Model for Agricultural Object Detection 2024-09-15
Show

Object detection plays a crucial role in the field of computer vision by autonomously locating and identifying objects of interest. The You Only Look Once (YOLO) model is an effective single-shot detector. However, YOLO faces challenges in cluttered or partially occluded scenes and can struggle with small, low-contrast objects. We propose a new method that integrates spatial transformer networks (STNs) into YOLO to improve performance. The proposed STN-YOLO aims to enhance the model's effectiveness by focusing on important areas of the image and improving the spatial invariance of the model before the detection process. Our proposed method improved object detection performance both qualitatively and quantitatively. We explore the impact of different localization networks within the STN module as well as the robustness of the model across different spatial transformations. We apply the STN-YOLO on benchmark datasets for Agricultural object detection as well as a new dataset from a state-of-the-art plant phenotyping greenhouse facility. Our code and dataset are publicly available.

7 pag...

7 pages, 5 figures, accepted to 2024 IEEE International Conference on Machine Learning and Applications

Towards a methodology to consider the environmental impacts of digital agriculture 2024-09-11
Show

Agriculture affects global warming, while its yields are threatened by it. Information and communication technology (ICT) is often considered as a potential lever to mitigate this tension, through monitoring and process optimization. However, while agricultural ICT is actively promoted, its environmental impact appears to be overlooked. Possible rebound effects could put at stake its net expected benefits and hamper agriculture sustainability. By adapting environmental footprint assessment methods to digital agriculture context, this research aims at defining a methodology taking into account the environmental footprint of agricultural ICT systems and their required infrastructures. The expected contribution is to propose present and prospective models based on possible digitalization scenarios, in order to assess effects and consequences of different technological paths on agriculture sustainability, sufficiency and resilience. The final results could be useful to enlighten societal debates and political decisions.

Privacy-Preserving Data Linkage Across Private and Public Datasets for Collaborative Agriculture Research 2024-09-09
Show

Digital agriculture leverages technology to enhance crop yield, disease resilience, and soil health, playing a critical role in agricultural research. However, it raises privacy concerns such as adverse pricing, price discrimination, higher insurance costs, and manipulation of resources, deterring farm operators from sharing data due to potential misuse. This study introduces a privacy-preserving framework that addresses these risks while allowing secure data sharing for digital agriculture. Our framework enables comprehensive data analysis while protecting privacy. It allows stakeholders to harness research-driven policies that link public and private datasets. The proposed algorithm achieves this by: (1) identifying similar farmers based on private datasets, (2) providing aggregate information like time and location, (3) determining trends in price and product availability, and (4) correlating trends with public policy data, such as food insecurity statistics. We validate the framework with real-world Farmer's Market datasets, demonstrating its efficacy through machine learning models trained on linked privacy-preserved data. The results support policymakers and researchers in addressing food insecurity and pricing issues. This work significantly contributes to digital agriculture by providing a secure method for integrating and analyzing data, driving advancements in agricultural technology and development.

AgGym: An agricultural biotic stress simulation environment for ultra-precision management planning 2024-09-01
Show

Agricultural production requires careful management of inputs such as fungicides, insecticides, and herbicides to ensure a successful crop that is high-yielding, profitable, and of superior seed quality. Current state-of-the-art field crop management relies on coarse-scale crop management strategies, where entire fields are sprayed with pest and disease-controlling chemicals, leading to increased cost and sub-optimal soil and crop management. To overcome these challenges and optimize crop production, we utilize machine learning tools within a virtual field environment to generate localized management plans for farmers to manage biotic threats while maximizing profits. Specifically, we present AgGym, a modular, crop and stress agnostic simulation framework to model the spread of biotic stresses in a field and estimate yield losses with and without chemical treatments. Our validation with real data shows that AgGym can be customized with limited data to simulate yield outcomes under various biotic stress conditions. We further demonstrate that deep reinforcement learning (RL) policies can be trained using AgGym for designing ultra-precise biotic stress mitigation strategies with potential to increase yield recovery with less chemicals and lower cost. Our proposed framework enables personalized decision support that can transform biotic stress management from being schedule based and reactive to opportunistic and prescriptive. We also release the AgGym software implementation as a community resource and invite experts to contribute to this open-sourced publicly available modular environment framework. The source code can be accessed at: https://github.com/SCSLabISU/AgGym.

Addressing the challenges of loop detection in agricultural environments 2024-08-30
Show

While visual SLAM systems are well studied and achieve impressive results in indoor and urban settings, natural, outdoor and open-field environments are much less explored and still present relevant research challenges. Visual navigation and local mapping have shown a relatively good performance in open-field environments. However, globally consistent mapping and long-term localization still depend on the robustness of loop detection and closure, for which the literature is scarce. In this work we propose a novel method to pave the way towards robust loop detection in open fields, particularly in agricultural settings, based on local feature search and stereo geometric refinement, with a final stage of relative pose estimation. Our method consistently achieves good loop detections, with a median error of 15cm. We aim to characterize open fields as a novel environment for loop detection, understanding the limitations and problems that arise when dealing with them.

Agricultural On-Demand Networks for 6G enabled by THz Communication 2024-08-28
Show

The transforming process in the scope of agriculture towards Smart Agriculture is an essential step to fulfill growing demands in respect to nourishment. Crucial challenges include establishing robust wireless communication in rural areas, enabling collaboration among agricultural machines, and integrating artificial intelligence into farming practices. Addressing these challenges necessitates a consistent communication system, with wireless communication emerging as a key enabler. Cellular technologies, as 5G and its successor 6G, can offer a comprehensive solution here. Leveraging technologies following the ITU-R M. 2160 recommendation like THz communication, low-latency wireless AI, and embedded sensing, can provide a flexible and energy-efficient infrastructure. This paper introduces on-demand networks based on the OpenRAN approach and a 7.2 functional split. By implementing THz front-hauling between components, a flexible application of 5G or future 6G networks can be realized. Experiments demonstrate that THz communication is suitable for data transmission over the eCPRI interface, particularly in terms of data rate, thereby reducing the need for wired alternatives such as fiber optic cables. Furthermore, limitations such as limited range are discussed, and possible initial solutions are presented. The integration of the OpenRAN standard further enhances flexibility, which is crucial in dynamic agricultural environments. This research contributes to the ongoing discourse on the transformative potential of 6G-enabled wireless communication in shaping the future of smart agriculture.

7 pages, 2 figures
Enhanced Infield Agriculture with Interpretable Machine Learning Approaches for Crop Classification 2024-08-22
Show

The increasing popularity of Artificial Intelligence in recent years has led to a surge in interest in image classification, especially in the agricultural sector. With the help of Computer Vision, Machine Learning, and Deep Learning, the sector has undergone a significant transformation, leading to the development of new techniques for crop classification in the field. Despite the extensive research on various image classification techniques, most have limitations such as low accuracy, limited use of data, and a lack of reporting model size and prediction. The most significant limitation of all is the need for model explainability. This research evaluates four different approaches for crop classification, namely traditional ML with handcrafted feature extraction methods like SIFT, ORB, and Color Histogram; Custom Designed CNN and established DL architecture like AlexNet; transfer learning on five models pre-trained using ImageNet such as EfficientNetV2, ResNet152V2, Xception, Inception-ResNetV2, MobileNetV3; and cutting-edge foundation models like YOLOv8 and DINOv2, a self-supervised Vision Transformer Model. All models performed well, but Xception outperformed all of them in terms of generalization, achieving 98% accuracy on the test data, with a model size of 80.03 MB and a prediction time of 0.0633 seconds. A key aspect of this research was the application of Explainable AI to provide the explainability of all the models. This journal presents the explainability of Xception model with LIME, SHAP, and GradCAM, ensuring transparency and trustworthiness in the models' predictions. This study highlights the importance of selecting the right model according to task-specific needs. It also underscores the important role of explainability in deploying AI in agriculture, providing insightful information to help enhance AI-driven crop management strategies.

Precision Agriculture: Ultra-Compact Sensor and Reconfigurable Antenna for Joint Sensing and Communication 2024-08-18
Show

In this paper, a joint sensing and communication system is presented for smart agriculture. The system integrates an Ultra-compact Soil Moisture Sensor (UCSMS) for precise sensing, along with a Pattern Reconfigurable Antenna (PRA) for efficient transmission of information to the base station. A multiturn complementary spiral resonator (MCSR) is etched onto the ground plane of a microstrip transmission line to achieve miniaturization. The UCSMS operates at 180 MHz with a 3-turn complementary spiral resonator (3-CSR), at 102 MHz with a 4- turn complementary spiral resonator (4-CSR), and at 86 MHz with a 5-turn complementary spiral resonator (5-CSR). Due to its low resonance frequency, the proposed UCSMS is insensitive to variations in the Volume Under Test (VUT) of soil. A probe-fed circular patch antenna is designed in the Wireless Local Area Network (WLAN) band (2.45 GHz) with a maximum measured gain of 5.63 dBi. Additionally, four varactor diodes are integrated across the slots on the bottom side of the substrate to achieve pattern reconfiguration. Six different radiation patterns have been achieved by using different bias conditions of the diodes. In standby mode, PRA can serve as a means for Wireless Power Transfer (WPT) or Energy Harvesting (EH) to store power in a battery. This stored power can then be utilized to bias the varactor diodes. The combination of UCSMS and PRA enables the realization of a joint sensing and communication system. The proposed system's planar and simple geometry, along with its high sensitivity of 2.05 %, makes it suitable for smart agriculture applications. Moreover, the sensor is adaptive and capable of measuring the permittivity of various Material Under Test (MUT) within the range of 1 to 23.

Time-Series Foundation Models for Forecasting Soil Moisture Levels in Smart Agriculture 2024-08-09
Show

The recent surge in foundation models for natural language processing and computer vision has fueled innovation across various domains. Inspired by this progress, we explore the potential of foundation models for time-series forecasting in smart agriculture, a field often plagued by limited data availability. Specifically, this work presents a novel application of $\texttt{TimeGPT}$, a state-of-the-art (SOTA) time-series foundation model, to predict soil water potential ($\psi_\mathrm{soil}$), a key indicator of field water status that is typically used for irrigation advice. Traditionally, this task relies on a wide array of input variables. We explore $\psi_\mathrm{soil}$'s ability to forecast $\psi_\mathrm{soil}$ in: ($i$) a zero-shot setting, ($ii$) a fine-tuned setting relying solely on historic $\psi_\mathrm{soil}$ measurements, and ($iii$) a fine-tuned setting where we also add exogenous variables to the model. We compare $\texttt{TimeGPT}$'s performance to established SOTA baseline models for forecasting $\psi_\mathrm{soil}$. Our results demonstrate that $\texttt{TimeGPT}$ achieves competitive forecasting accuracy using only historical $\psi_\mathrm{soil}$ data, highlighting its remarkable potential for agricultural applications. This research paves the way for foundation time-series models for sustainable development in agriculture by enabling forecasting tasks that were traditionally reliant on extensive data collection and domain expertise.

7 pag...

7 pages, accepted at KDD '24 - Fragile Earth Workshop https://openreview.net/forum?id=GZBGhi4JfE

LLMs for Enhanced Agricultural Meteorological Recommendations 2024-07-30
Show

Agricultural meteorological recommendations are crucial for enhancing crop productivity and sustainability by providing farmers with actionable insights based on weather forecasts, soil conditions, and crop-specific data. This paper presents a novel approach that leverages large language models (LLMs) and prompt engineering to improve the accuracy and relevance of these recommendations. We designed a multi-round prompt framework to iteratively refine recommendations using updated data and feedback, implemented on ChatGPT, Claude2, and GPT-4. Our method was evaluated against baseline models and a Chain-of-Thought (CoT) approach using manually collected datasets. The results demonstrate significant improvements in accuracy and contextual relevance, with our approach achieving up to 90% accuracy and high GPT-4 scores. Additional validation through real-world pilot studies further confirmed the practical benefits of our method, highlighting its potential to transform agricultural practices and decision-making.

10 pages
Enhancing Agricultural Machinery Management through Advanced LLM Integration 2024-07-30
Show

The integration of artificial intelligence into agricultural practices, specifically through Consultation on Intelligent Agricultural Machinery Management (CIAMM), has the potential to revolutionize efficiency and sustainability in farming. This paper introduces a novel approach that leverages large language models (LLMs), particularly GPT-4, combined with multi-round prompt engineering to enhance decision-making processes in agricultural machinery management. We systematically developed and refined prompts to guide the LLMs in generating precise and contextually relevant outputs. Our approach was evaluated using a manually curated dataset from various online sources, and performance was assessed with accuracy and GPT-4 Scores. Comparative experiments were conducted using LLama-2-70B, ChatGPT, and GPT-4 models, alongside baseline and state-of-the-art methods such as Chain of Thought (CoT) and Thought of Thought (ThoT). The results demonstrate that our method significantly outperforms these approaches, achieving higher accuracy and relevance in generated responses. This paper highlights the potential of advanced prompt engineering techniques in improving the robustness and applicability of AI in agricultural contexts.

10 pages
Harnessing Large Vision and Language Models in Agriculture: A Review 2024-07-29
Show

Large models can play important roles in many domains. Agriculture is another key factor affecting the lives of people around the world. It provides food, fabric, and coal for humanity. However, facing many challenges such as pests and diseases, soil degradation, global warming, and food security, how to steadily increase the yield in the agricultural sector is a problem that humans still need to solve. Large models can help farmers improve production efficiency and harvest by detecting a series of agricultural production tasks such as pests and diseases, soil quality, and seed quality. It can also help farmers make wise decisions through a variety of information, such as images, text, etc. Herein, we delve into the potential applications of large models in agriculture, from large language model (LLM) and large vision model (LVM) to large vision-language models (LVLM). After gaining a deeper understanding of multimodal large language models (MLLM), it can be recognized that problems such as agricultural image processing, agricultural question answering systems, and agricultural machine automation can all be solved by large models. Large models have great potential in the field of agriculture. We outline the current applications of agricultural large models, and aims to emphasize the importance of large models in the domain of agriculture. In the end, we envisage a future in which famers use MLLM to accomplish many tasks in agriculture, which can greatly improve agricultural production efficiency and yield.

PhenoBench -- A Large Dataset and Benchmarks for Semantic Image Interpretation in the Agricultural Domain 2024-07-24
Show

The production of food, feed, fiber, and fuel is a key task of agriculture, which has to cope with many challenges in the upcoming decades, e.g., a higher demand, climate change, lack of workers, and the availability of arable land. Vision systems can support making better and more sustainable field management decisions, but also support the breeding of new crop varieties by allowing temporally dense and reproducible measurements. Recently, agricultural robotics got an increasing interest in the vision and robotics communities since it is a promising avenue for coping with the aforementioned lack of workers and enabling more sustainable production. While large datasets and benchmarks in other domains are readily available and enable significant progress, agricultural datasets and benchmarks are comparably rare. We present an annotated dataset and benchmarks for the semantic interpretation of real agricultural fields. Our dataset recorded with a UAV provides high-quality, pixel-wise annotations of crops and weeds, but also crop leaf instances at the same time. Furthermore, we provide benchmarks for various tasks on a hidden test set comprised of different fields: known fields covered by the training data and a completely unseen field. Our dataset, benchmarks, and code are available at \url{https://www.phenobench.org}.

Accep...

Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI)

Spatially-clustered spatial autoregressive models with application to agricultural market concentration in Europe 2024-07-19
Show

In this paper, we present an extension of the spatially-clustered linear regression models, namely, the spatially-clustered spatial autoregression (SCSAR) model, to deal with spatial heterogeneity issues in clustering procedures. In particular, we extend classical spatial econometrics models, such as the spatial autoregressive model, the spatial error model, and the spatially-lagged model, by allowing the regression coefficients to be spatially varying according to a cluster-wise structure. Cluster memberships and regression coefficients are jointly estimated through a penalized maximum likelihood algorithm which encourages neighboring units to belong to the same spatial cluster with shared regression coefficients. Motivated by the increase of observed values of the Gini index for the agricultural production in Europe between 2010 and 2020, the proposed methodology is employed to assess the presence of local spatial spillovers on the market concentration index for the European regions in the last decade. Empirical findings support the hypothesis of fragmentation of the European agricultural market, as the regions can be well represented by a clustering structure partitioning the continent into three-groups, roughly approximated by a division among Western, North Central and Southeastern regions. Also, we detect heterogeneous local effects induced by the selected explanatory variables on the regional market concentration. In particular, we find that variables associated with social, territorial and economic relevance of the agricultural sector seem to act differently throughout the spatial dimension, across the clusters and with respect to the pooled model, and temporal dimension.

Optimizing Agricultural Order Fulfillment Systems: A Hybrid Tree Search Approach 2024-07-19
Show

Efficient order fulfillment is vital in the agricultural industry, particularly due to the seasonal nature of seed supply chains. This paper addresses the challenge of optimizing seed orders fulfillment in a centralized warehouse where orders are processed in waves, taking into account the unpredictable arrival of seed stocks and strict order deadlines. We model the wave scheduling problem as a Markov decision process and propose an adaptive hybrid tree search algorithm that combines Monte Carlo tree search with domain-specific knowledge to efficiently navigate the complex, dynamic environment of seed distribution. By leveraging historical data and stochastic modeling, our method enables forecast-informed scheduling decisions that balance immediate requirements with long-term operational efficiency. The key idea is that we can augment Monte Carlo tree search algorithm with problem-specific side information that dynamically reduces the number of candidate actions at each decision step to handle the large state and action spaces that render traditional solution methods computationally intractable. Extensive simulations with realistic parameters-including a diverse range of products, a high volume of orders, and authentic seasonal durations-demonstrate that the proposed approach significantly outperforms existing industry standard methods.

Pixel-wise Agricultural Image Time Series Classification: Comparisons and a Deformable Prototype-based Approach 2024-07-12
Show

Improvements in Earth observation by satellites allow for imagery of ever higher temporal and spatial resolution. Leveraging this data for agricultural monitoring is key for addressing environmental and economic challenges. Current methods for crop segmentation using temporal data either rely on annotated data or are heavily engineered to compensate the lack of supervision. In this paper, we present and compare datasets and methods for both supervised and unsupervised pixel-wise segmentation of satellite image time series (SITS). We also introduce an approach to add invariance to spectral deformations and temporal shifts to classical prototype-based methods such as K-means and Nearest Centroid Classifier (NCC). We study different levels of supervision and show this simple and highly interpretable method achieves the best performance in the low data regime and significantly improves the state of the art for unsupervised classification of agricultural time series on four recent SITS datasets.

Revis...

Revised version. Added references and baselines. Corrected typos. Added discussion section and Appendix A, B and C

Agricultural Recommendation System based on Deep Learning: A Multivariate Weather Forecasting Approach 2024-07-12
Show

Agriculture plays a fundamental role in driving economic growth and ensuring food security for populations around the world. Although labor-intensive agriculture has led to steady increases in food grain production in many developing countries, it is frequently challenged by adverse weather conditions, including heavy rainfall, low temperatures, and drought. These factors substantially hinder food production, posing significant risks to global food security. In order to have a profitable, sustainable, and farmer-friendly agricultural practice, this paper proposes a context-based crop recommendation system powered by a weather forecast model. For implementation purposes, we have considered the whole territory of Bangladesh. With extensive evaluation, the multivariate Stacked Bi-LSTM (three Bi-LSTM layers with a time Distributed layer) Network is employed as the weather forecasting model. The proposed weather model can forecast Rainfall, Temperature, Humidity, and Sunshine for any given location in Bangladesh with an average R-Squared value of 0.9824, and the model outperforms other state-of-the-art LSTM models. These predictions guide our system in generating viable farming decisions. Additionally, our full-fledged system is capable of alerting the farmers about extreme weather conditions so that preventive measures can be undertaken to protect the crops. Finally, the system is also adept at making knowledge-based crop suggestions for flood and drought-prone regions.

18 pa...

18 pages, 16 figures and 13 tables. Two figures and one table have been added to this version

Investigating the Segment Anything Foundation Model for Mapping Smallholder Agriculture Field Boundaries Without Training Labels 2024-07-01
Show

Accurate mapping of agricultural field boundaries is crucial for enhancing outcomes like precision agriculture, crop monitoring, and yield estimation. However, extracting these boundaries from satellite images is challenging, especially for smallholder farms and data-scarce environments. This study explores the Segment Anything Model (SAM) to delineate agricultural field boundaries in Bihar, India, using 2-meter resolution SkySat imagery without additional training. We evaluate SAM's performance across three model checkpoints, various input sizes, multi-date satellite images, and edge-enhanced imagery. Our results show that SAM correctly identifies about 58% of field boundaries, comparable to other approaches requiring extensive training data. Using different input image sizes improves accuracy, with the most significant improvement observed when using multi-date satellite images. This work establishes proof of concept for using SAM and maximizing its potential in agricultural field boundary mapping. Our work highlights SAM's potential in delineating agriculture field boundary in training-data scarce settings to enable a wide range of agriculture related analysis.

11 pa...

11 pages, 6 main figures, 7 supplementary figures

MARLP: Time-series Forecasting Control for Agricultural Managed Aquifer Recharge 2024-07-01
Show

The rapid decline in groundwater around the world poses a significant challenge to sustainable agriculture. To address this issue, agricultural managed aquifer recharge (Ag-MAR) is proposed to recharge the aquifer by artificially flooding agricultural lands using surface water. Ag-MAR requires a carefully selected flooding schedule to avoid affecting the oxygen absorption of crop roots. However, current Ag-MAR scheduling does not take into account complex environmental factors such as weather and soil oxygen, resulting in crop damage and insufficient recharging amounts. This paper proposes MARLP, the first end-to-end data-driven control system for Ag-MAR. We first formulate Ag-MAR as an optimization problem. To that end, we analyze four-year in-field datasets, which reveal the multi-periodicity feature of the soil oxygen level trends and the opportunity to use external weather forecasts and flooding proposals as exogenous clues for soil oxygen prediction. Then, we design a two-stage forecasting framework. In the first stage, it extracts both the cross-variate dependency and the periodic patterns from historical data to conduct preliminary forecasting. In the second stage, it uses weather-soil and flooding-soil causality to facilitate an accurate prediction of soil oxygen levels. Finally, we conduct model predictive control (MPC) for Ag-MAR flooding. To address the challenge of large action spaces, we devise a heuristic planning module to reduce the number of flooding proposals to enable the search for optimal solutions. Real-world experiments show that MARLP reduces the oxygen deficit ratio by 86.8% while improving the recharging amount in unit time by 35.8%, compared with the previous four years.

Accepted by KDD 2024
DAVIS-Ag: A Synthetic Plant Dataset for Prototyping Domain-Inspired Active Vision in Agricultural Robots 2024-07-01
Show

In agricultural environments, viewpoint planning can be a critical functionality for a robot with visual sensors to obtain informative observations of objects of interest (e.g., fruits) from complex structures of plant with random occlusions. Although recent studies on active vision have shown some potential for agricultural tasks, each model has been designed and validated on a unique environment that would not easily be replicated for benchmarking novel methods being developed later. In this paper, we introduce a dataset, so-called DAVIS-Ag, for promoting more extensive research on Domain-inspired Active VISion in Agriculture. To be specific, we leveraged our open-source "AgML" framework and 3D plant simulator of "Helios" to produce 502K RGB images from 30K densely sampled spatial locations in 632 synthetic orchards. Moreover, plant environments of strawberries, tomatoes, and grapes are considered at two different scales (i.e., Single-Plant and Multi-Plant). Useful labels are also provided for each image, including (1) bounding boxes and (2) instance segmentation masks for all identifiable fruits, and also (3) pointers to other images of the viewpoints that are reachable by an execution of action so as to simulate active viewpoint selections at each time step. Using DAVIS-Ag, we visualize motivating examples where fruit visibility can dramatically change depending on the pose of the camera view primarily due to occlusions by other components, such as leaves. Furthermore, we present several baseline models with experiment results for benchmarking in the task of target visibility maximization. Transferability to real strawberry environments is also investigated to demonstrate the feasibility of using the dataset for prototyping real-world solutions. For future research, our dataset is made publicly available online: https://github.com/ctyeong/DAVIS-Ag.

8 pag...

8 pages, 6 figures, 5 tables. Accepted to CASE2024

Agriculture-Vision Challenge 2024 -- The Runner-Up Solution for Agricultural Pattern Recognition via Class Balancing and Model Ensemble 2024-06-18
Show

The Agriculture-Vision Challenge at CVPR 2024 aims at leveraging semantic segmentation models to produce pixel level semantic segmentation labels within regions of interest for multi-modality satellite images. It is one of the most famous and competitive challenges for global researchers to break the boundary between computer vision and agriculture sectors. However, there is a serious class imbalance problem in the agriculture-vision dataset, which hinders the semantic segmentation performance. To solve this problem, firstly, we propose a mosaic data augmentation with a rare class sampling strategy to enrich long-tail class samples. Secondly, we employ an adaptive class weight scheme to suppress the contribution of the common classes while increasing the ones of rare classes. Thirdly, we propose a probability post-process to increase the predicted value of the rare classes. Our methodology achieved a mean Intersection over Union (mIoU) score of 0.547 on the test set, securing second place in this challenge.

YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain 2024-06-14
Show

This survey investigates the transformative potential of various YOLO variants, from YOLOv1 to the state-of-the-art YOLOv10, in the context of agricultural advancements. The primary objective is to elucidate how these cutting-edge object detection models can re-energise and optimize diverse aspects of agriculture, ranging from crop monitoring to livestock management. It aims to achieve key objectives, including the identification of contemporary challenges in agriculture, a detailed assessment of YOLO's incremental advancements, and an exploration of its specific applications in agriculture. This is one of the first surveys to include the latest YOLOv10, offering a fresh perspective on its implications for precision farming and sustainable agricultural practices in the era of Artificial Intelligence and automation. Further, the survey undertakes a critical analysis of YOLO's performance, synthesizes existing research, and projects future trends. By scrutinizing the unique capabilities packed in YOLO variants and their real-world applications, this survey provides valuable insights into the evolving relationship between YOLO variants and agriculture. The findings contribute towards a nuanced understanding of the potential for precision farming and sustainable agricultural practices, marking a significant step forward in the integration of advanced object detection technologies within the agricultural sector.

31 pages
ARA-O-RAN: End-to-End Programmable O-RAN Living Lab for Agriculture and Rural Communities 2024-06-14
Show

As wireless networks evolve towards open architectures like O-RAN, testing, and integration platforms are crucial to address challenges like interoperability. This paper describes ARA-O-RAN, a novel O-RAN testbed established through the NSF Platforms for Advanced Wireless Research (PAWR) ARA platform. ARA provides an at-scale rural wireless living lab focused on technologies for digital agriculture and rural communities. As an O-RAN Alliance certified Open Testing and Integration Centre (OTIC), ARA launched ARA-O-RAN -- the first public O-RAN testbed tailored to rural and agriculture use cases, together with the end-to-end, whole-stack programmability. ARA-O-RAN uniquely combines support for outdoor testing across a university campus, surrounding farmlands, and rural communities with a 50-node indoor sandbox. The testbed facilitates vital R&D to implement open architectures that can meet rural connectivity needs. The paper outlines ARA-O-RAN's hardware system design, software architecture, and enabled research experiments. It also discusses plans aligned with national spectrum policy and rural spectrum innovation. ARA-O-RAN exemplifies the value of purpose-built wireless testbeds in accelerating impactful wireless research.

Current applications and potential future directions of reinforcement learning-based Digital Twins in agriculture 2024-06-13
Show

Digital Twins have gained attention in various industries for simulation, monitoring, and decision-making, relying on ever-improving machine learning models. However, agricultural Digital Twin implementations are limited compared to other industries. Meanwhile, machine learning, particularly reinforcement learning, has shown potential in agricultural applications like optimizing decision-making, task automation, and resource management. A key aspect of Digital Twins is representing physical assets or systems in a virtual environment, which aligns well with reinforcement learning's need for environment representations to learn the best policy for a task. Reinforcement learning in agriculture can thus enable various Digital Twin applications in agricultural domains. This review aims to categorize existing research employing reinforcement learning in agricultural settings by application domains like robotics, greenhouse management, irrigation systems, and crop management, identifying potential future areas for reinforcement learning-based Digital Twins. It also categorizes the reinforcement learning techniques used, including tabular methods, Deep Q-Networks (DQN), Policy Gradient methods, and Actor-Critic algorithms, to overview currently employed models. The review seeks to provide insights into the state-of-the-art in integrating Digital Twins and reinforcement learning in agriculture, identifying gaps and opportunities for future research, and exploring synergies to tackle agricultural challenges and optimize farming, paving the way for more efficient and sustainable farming methodologies.

Optimization-Based Motion Planning for Autonomous Agricultural Vehicles Turning in Constrained Headlands 2024-06-11
Show

Headland maneuvering is a crucial aspect of unmanned field operations for autonomous agricultural vehicles (AAVs). While motion planning for headland turning in open fields has been extensively studied and integrated into commercial auto-guidance systems, the existing methods primarily address scenarios with ample headland space and thus may not work in more constrained headland geometries. Commercial orchards often contain narrow and irregularly shaped headlands, which may include static obstacles,rendering the task of planning a smooth and collision-free turning trajectory difficult. To address this challenge, we propose an optimization-based motion planning algorithm for headland turning under geometrical constraints imposed by field geometry and obstacles.

Analyzing trends for agricultural decision support system using twitter data 2024-06-04
Show

The trends and reactions of the general public towards global events can be analyzed using data from social platforms, including Twitter. The number of tweets has been reported to help detect variations in communication traffic within subsets like countries, age groups and industries. Similarly, publicly accessible data and (in particular) data from social media about agricultural issues provide a great opportunity for obtaining instantaneous snapshots of farmer opinions and a method to track changes in opinion through temporal analysis. In this paper we hypothesize that the presence of keywords like precision agriculture, digital agriculture, Internet of Things (IoT), BigData, remote sensing, GPS, etc., in tweets could serve as an indicator of discussions centered around interest in modern farming practices. We extracted relevant tweets using keywords such as IoT, BigData and Geographical Information System (GIS), and then analyzed their geographical origin and frequency of their mention. We analyzed the Twitter data for the period of 1st -11th January 2018 to understand these trends and the factors affecting them. These factors, such as special events, projects, biogeography, etc., were further analyzed using tweet sources and trending hashtags from the database. The regions with the highest interest in the keywords were United States, Egypt, Brazil, Japan and China. A comparison of frequency of keywords revealed IoT as the most tweeted word (77.6%) in the downloaded data. The most used language was English followed by Spanish, Japanese and French. Periodical tweets on IoT from an account handled by IoT project on Twitter and Seminars on IoT in January in Santa Catarina (Brazil) were found to be the underlying factors for the observed trends.

7 pag...

7 pages, conference accepted

Comparative Analysis of Hyperspectral Image Reconstruction Using Deep Learning for Agricultural and Biological Applications 2024-06-02
Show

Hyperspectral imaging (HSI) has become a key technology for non-invasive quality evaluation in various fields, offering detailed insights through spatial and spectral data. Despite its efficacy, the complexity and high cost of HSI systems have hindered their widespread adoption. This study addressed these challenges by exploring deep learning-based hyperspectral image reconstruction from RGB (Red, Green, Blue) images, particularly for agricultural products. Specifically, different hyperspectral reconstruction algorithms, such as Hyperspectral Convolutional Neural Network - Dense (HSCNN-D), High-Resolution Network (HRNET), and Multi-Scale Transformer Plus Plus (MST++), were compared to assess the dry matter content of sweet potatoes. Among the tested reconstruction methods, HRNET demonstrated superior performance, achieving the lowest mean relative absolute error (MRAE) of 0.07, root mean square error (RMSE) of 0.03, and the highest peak signal-to-noise ratio (PSNR) of 32.28 decibels (dB). Some key features were selected using the genetic algorithm (GA), and their importance was interpreted using explainable artificial intelligence (XAI). Partial least squares regression (PLSR) models were developed using the RGB, reconstructed, and ground truth (GT) data. The visual and spectra quality of these reconstructed methods was compared with GT data, and predicted maps were generated. The results revealed the prospect of deep learning-based hyperspectral image reconstruction as a cost-effective and efficient quality assessment tool for agricultural and biological applications.

Under review
How accurate are existing land cover maps for agriculture in Sub-Saharan Africa? 2024-06-02
Show

Satellite Earth observations (EO) can provide affordable and timely information for assessing crop conditions and food production. Such monitoring systems are essential in Africa, where there is high food insecurity and sparse agricultural statistics. EO-based monitoring systems require accurate cropland maps to provide information about croplands, but there is a lack of data to determine which of the many available land cover maps most accurately identify cropland in African countries. This study provides a quantitative evaluation and intercomparison of 11 publicly available land cover maps to assess their suitability for cropland classification and EO-based agriculture monitoring in Africa using statistically rigorous reference datasets from 8 countries. We hope the results of this study will help users determine the most suitable map for their needs and encourage future work to focus on resolving inconsistencies between maps and improving accuracy in low-accuracy regions.

SPARROW: Smart Precision Agriculture Robot for Ridding of Weeds 2024-05-31
Show

The advancements in precision agriculture are vital to support the increasing demand for global food supply. Precision spot spraying is a major step towards reducing chemical usage for pest and weed control in agriculture. A novel spot spraying algorithm that autonomously detects weeds and performs trajectory planning for the sprayer nozzle has been proposed. Furthermore, this research introduces a vision-based autonomous navigation system that operates through the detected crop row, effectively synchronizing with an autonomous spraying algorithm. This proposed system is characterized by its cost effectiveness that enable the autonomous spraying of herbicides onto detected weeds.

submi...

submitted to 5th INTERNATIONAL CONFERENCE OF EMERGING TECHNOLOGIES 2024, BELGAUM, INDIA

VisTA-SR: Improving the Accuracy and Resolution of Low-Cost Thermal Imaging Cameras for Agriculture 2024-05-29
Show

Thermal cameras are an important tool for agricultural research because they allow for non-invasive measurement of plant temperature, which relates to important photochemical, hydraulic, and agronomic traits. Utilizing low-cost thermal cameras can lower the barrier to introducing thermal imaging in agricultural research and production. This paper presents an approach to improve the temperature accuracy and image quality of low-cost thermal imaging cameras for agricultural applications. Leveraging advancements in computer vision techniques, particularly deep learning networks, we propose a method, called $\textbf{VisTA-SR}$ ($\textbf{Vis}$ual & $\textbf{T}$hermal $\textbf{A}$lignment and $\textbf{S}$uper-$\textbf{R}$esolution Enhancement) that combines RGB and thermal images to enhance the capabilities of low-resolution thermal cameras. The research includes calibration and validation of temperature measurements, acquisition of paired image datasets, and the development of a deep learning network tailored for agricultural thermal imaging. Our study addresses the challenges of image enhancement in the agricultural domain and explores the potential of low-cost thermal cameras to replace high-resolution industrial cameras. Experimental results demonstrate the effectiveness of our approach in enhancing temperature accuracy and image sharpness, paving the way for more accessible and efficient thermal imaging solutions in agriculture.

Photorealistic Robotic Simulation using Unreal Engine 5 for Agricultural Applications 2024-05-28
Show

This work presents a new robotics simulation environment built upon Unreal Engine 5 (UE5) for agricultural image data generation. The simulation utilizes the state-of-the-art real-time rendering engine to provide realistic plant images which are often used in agricultural applications. This study showcases the rendering accuracy of UE5 in comparison to existing tools and assesses its positional accuracy when integrated with Robot Operating Systems (ROS). The results indicate that UE5 achieves an impressive average distance error of 0.021mm when compared to predetermined setpoints in a multi-robot setup involving two UR10 arms.

3 pag...

3 pages, 4 figures, extended abstract accepted at IROS 2023 Workshop on Agricultural Robotics for a Sustainable Future (WARS_1)

MetaFruit Meets Foundation Models: Leveraging a Comprehensive Multi-Fruit Dataset for Advancing Agricultural Foundation Models 2024-05-14
Show

Fruit harvesting poses a significant labor and financial burden for the industry, highlighting the critical need for advancements in robotic harvesting solutions. Machine vision-based fruit detection has been recognized as a crucial component for robust identification of fruits to guide robotic manipulation. Despite considerable progress in leveraging deep learning and machine learning techniques for fruit detection, a common shortfall is the inability to swiftly extend the developed models across different orchards and/or various fruit species. Additionally, the limited availability of pertinent data further compounds these challenges. In this work, we introduce MetaFruit, the largest publicly available multi-class fruit dataset, comprising 4,248 images and 248,015 manually labeled instances across diverse U.S. orchards. Furthermore, this study proposes an innovative open-set fruit detection system leveraging advanced Vision Foundation Models (VFMs) for fruit detection that can adeptly identify a wide array of fruit types under varying orchard conditions. This system not only demonstrates remarkable adaptability in learning from minimal data through few-shot learning but also shows the ability to interpret human instructions for subtle detection tasks. The performance of the developed foundation model is comprehensively evaluated using several metrics, which outperforms the existing state-of-the-art algorithms in both our MetaFruit dataset and other open-sourced fruit datasets, thereby setting a new benchmark in the field of agricultural technology and robotic harvesting. The MetaFruit dataset and detection framework are open-sourced to foster future research in vision-based fruit harvesting, marking a significant stride toward addressing the urgent needs of the agricultural sector.

14 pa...

14 pages, 5 figures, 7 tables

Lessons from Deploying CropFollow++: Under-Canopy Agricultural Navigation with Keypoints 2024-04-26
Show

We present a vision-based navigation system for under-canopy agricultural robots using semantic keypoints. Autonomous under-canopy navigation is challenging due to the tight spacing between the crop rows ($\sim 0.75$ m), degradation in RTK-GPS accuracy due to multipath error, and noise in LiDAR measurements from the excessive clutter. Our system, CropFollow++, introduces modular and interpretable perception architecture with a learned semantic keypoint representation. We deployed CropFollow++ in multiple under-canopy cover crop planting robots on a large scale (25 km in total) in various field conditions and we discuss the key lessons learned from this.

Accep...

Accepted to the IEEE ICRA Workshop on Field Robotics 2024

Optimizing Energy Efficiency of 5G RedCap Beam Management for Smart Agriculture Applications 2024-04-24
Show

Beam management in 5G NR involves the transmission and reception of control signals such as Synchronization Signal Blocks (SSBs), crucial for tasks like initial access and/or channel estimation. However, this procedure consumes energy, which is particularly challenging to handle for battery-constrained nodes such as RedCap devices. Specifically, in this work we study a mid-market Internet of Things (IoT) Smart Agriculture (SmA) deployment where an Unmanned Autonomous Vehicle (UAV) acts as a base station "from the sky" (UAV-gNB) to monitor and control ground User Equipments (UEs) in the field. Then, we formalize a multi-variate optimization problem to determine the optimal beam management design for RedCap SmA devices in order to reduce the energy consumption at the UAV-gNB. Specifically, we jointly optimize the transmission power and the beamwidth at the UAV-gNB. Based on the analysis, we derive the so-called "regions of feasibility," i.e., the upper limit(s) of the beam management parameters for which RedCap Quality of Service (QoS) and energy constraints are met. We study the impact of factors like the total transmission power at the gNB, the Signal-to-Noise Ratio (SNR) threshold for successful packet decoding, the number of UEs in the region, and the misdetection probability. Simulation results demonstrate that there exists an optimal configuration for beam management to promote energy efficiency, which depends on the speed of the UEs, the beamwidth, and other network parameters.

This ...

This paper has been submitted to IEEE for publication. Copyright may change without notice

Label-free Anomaly Detection in Aerial Agricultural Images with Masked Image Modeling 2024-04-13
Show

Detecting various types of stresses (nutritional, water, nitrogen, etc.) in agricultural fields is critical for farmers to ensure maximum productivity. However, stresses show up in different shapes and sizes across different crop types and varieties. Hence, this is posed as an anomaly detection task in agricultural images. Accurate anomaly detection in agricultural UAV images is vital for early identification of field irregularities. Traditional supervised learning faces challenges in adapting to diverse anomalies, necessitating extensive annotated data. In this work, we overcome this limitation with self-supervised learning using a masked image modeling approach. Masked Autoencoders (MAE) extract meaningful normal features from unlabeled image samples which produces high reconstruction error for the abnormal pixels during reconstruction. To remove the need of using only normal" data while training, we use an anomaly suppression loss mechanism that effectively minimizes the reconstruction of anomalous pixels and allows the model to learn anomalous areas without explicitly separating normal" images for training. Evaluation on the Agriculture-Vision data challenge shows a mIOU score improvement in comparison to prior state of the art in unsupervised and self-supervised methods. A single model generalizes across all the anomaly categories in the Agri-Vision Challenge Dataset

The p...

The paper has been accepted to CVPR 2024 5th Workshop on Vision for Agriculture as an Oral Paper

Active learning for efficient annotation in precision agriculture: a use-case on crop-weed semantic segmentation 2024-04-03
Show

Optimizing deep learning models requires large amounts of annotated images, a process that is both time-intensive and costly. Especially for semantic segmentation models in which every pixel must be annotated. A potential strategy to mitigate annotation effort is active learning. Active learning facilitates the identification and selection of the most informative images from a large unlabelled pool. The underlying premise is that these selected images can improve the model's performance faster than random selection to reduce annotation effort. While active learning has demonstrated promising results on benchmark datasets like Cityscapes, its performance in the agricultural domain remains largely unexplored. This study addresses this research gap by conducting a comparative study of three active learning-based acquisition functions: Bayesian Active Learning by Disagreement (BALD), stochastic-based BALD (PowerBALD), and Random. The acquisition functions were tested on two agricultural datasets: Sugarbeet and Corn-Weed, both containing three semantic classes: background, crop and weed. Our results indicated that active learning, especially PowerBALD, yields a higher performance than Random sampling on both datasets. But due to the relatively large standard deviations, the differences observed were minimal; this was partly caused by high image redundancy and imbalanced classes. Specifically, more than 89% of the pixels belonged to the background class on both datasets. The absence of significant results on both datasets indicates that further research is required for applying active learning on agricultural datasets, especially if they contain a high-class imbalance and redundant images. Recommendations and insights are provided in this paper to potentially resolve such issues.

Kallaama: A Transcribed Speech Dataset about Agriculture in the Three Most Widely Spoken Languages in Senegal 2024-04-02
Show

This work is part of the Kallaama project, whose objective is to produce and disseminate national languages corpora for speech technologies developments, in the field of agriculture. Except for Wolof, which benefits from some language data for natural language processing, national languages of Senegal are largely ignored by language technology providers. However, such technologies are keys to the protection, promotion and teaching of these languages. Kallaama focuses on the 3 main spoken languages by Senegalese people: Wolof, Pulaar and Sereer. These languages are widely spoken by the population, with around 10 million of native Senegalese speakers, not to mention those outside the country. However, they remain under-resourced in terms of machine-readable data that can be used for automatic processing and language technologies, all the more so in the agricultural sector. We release a transcribed speech dataset containing 125 hours of recordings, about agriculture, in each of the above-mentioned languages. These resources are specifically designed for Automatic Speech Recognition purpose, including traditional approaches. To build such technologies, we provide textual corpora in Wolof and Pulaar, and a pronunciation lexicon containing 49,132 entries from the Wolof dataset.

To ap...

To appear in RAIL 2024

Generating Diverse Agricultural Data for Vision-Based Farming Applications 2024-03-27
Show

We present a specialized procedural model for generating synthetic agricultural scenes, focusing on soybean crops, along with various weeds. This model is capable of simulating distinct growth stages of these plants, diverse soil conditions, and randomized field arrangements under varying lighting conditions. The integration of real-world textures and environmental factors into the procedural generation process enhances the photorealism and applicability of the synthetic data. Our dataset includes 12,000 images with semantic labels, offering a comprehensive resource for computer vision tasks in precision agriculture, such as semantic segmentation for autonomous weed control. We validate our model's effectiveness by comparing the synthetic data against real agricultural images, demonstrating its potential to significantly augment training data for machine learning models in agriculture. This approach not only provides a cost-effective solution for generating high-quality, diverse data but also addresses specific needs in agricultural vision tasks that are not fully covered by general-purpose models.

10 pa...

10 pages, 8 figures, 3 tables

Self-Supervised Backbone Framework for Diverse Agricultural Vision Tasks 2024-03-22
Show

Computer vision in agriculture is game-changing with its ability to transform farming into a data-driven, precise, and sustainable industry. Deep learning has empowered agriculture vision to analyze vast, complex visual data, but heavily rely on the availability of large annotated datasets. This remains a bottleneck as manual labeling is error-prone, time-consuming, and expensive. The lack of efficient labeling approaches inspired us to consider self-supervised learning as a paradigm shift, learning meaningful feature representations from raw agricultural image data. In this work, we explore how self-supervised representation learning unlocks the potential applicability to diverse agriculture vision tasks by eliminating the need for large-scale annotated datasets. We propose a lightweight framework utilizing SimCLR, a contrastive learning approach, to pre-train a ResNet-50 backbone on a large, unannotated dataset of real-world agriculture field images. Our experimental analysis and results indicate that the model learns robust features applicable to a broad range of downstream agriculture tasks discussed in the paper. Additionally, the reduced reliance on annotated data makes our approach more cost-effective and accessible, paving the way for broader adoption of computer vision in agriculture.

Bangladesh Agricultural Knowledge Graph: Enabling Semantic Integration and Data-driven Analysis--Full Version 2024-03-19
Show

In Bangladesh, agriculture is a crucial driver for addressing Sustainable Development Goal 1 (No Poverty) and 2 (Zero Hunger), playing a fundamental role in the economy and people's livelihoods. To enhance the sustainability and resilience of the agriculture industry through data-driven insights, the Bangladesh Bureau of Statistics and other organizations consistently collect and publish agricultural data on the Web. Nevertheless, the current datasets encounter various challenges: 1) they are presented in an unsustainable, static, read-only, and aggregated format, 2) they do not conform to the Findability, Accessibility, Interoperability, and Reusability (FAIR) principles, and 3) they do not facilitate interactive analysis and integration with other data sources. In this paper, we present a thorough solution, delineating a systematic procedure for developing BDAKG: a knowledge graph that semantically and analytically integrates agriculture data in Bangladesh. BDAKG incorporates multidimensional semantics, is linked with external knowledge graphs, is compatible with OLAP, and adheres to the FAIR principles. Our experimental evaluation centers on evaluating the integration process and assessing the quality of the resultant knowledge graph in terms of completeness, timeliness, FAIRness, OLAP compatibility and data-driven analysis. Our federated data analysis recommend a strategic approach focused on decreasing CO$_2$ emissions, fostering economic growth, and promoting sustainable forestry.

40 pages, 15 figures
3D Reconstruction in Noisy Agricultural Environments: A Bayesian Optimization Perspective for View Planning 2024-03-18
Show

3D reconstruction is a fundamental task in robotics that gained attention due to its major impact in a wide variety of practical settings, including agriculture, underwater, and urban environments. This task can be carried out via view planning (VP), which aims to optimally place a certain number of cameras in positions that maximize the visual information, improving the resulting 3D reconstruction. Nonetheless, in most real-world settings, existing environmental noise can significantly affect the performance of 3D reconstruction. To that end, this work advocates a novel geometric-based reconstruction quality function for VP, that accounts for the existing noise of the environment, without requiring its closed-form expression. With no analytic expression of the objective function, this work puts forth an adaptive Bayesian optimization algorithm for accurate 3D reconstruction in the presence of noise. Numerical tests on noisy agricultural environments showcase the merits of the proposed approach for 3D reconstruction with even a small number of available cameras.

GPT-4 as Evaluator: Evaluating Large Language Models on Pest Management in Agriculture 2024-03-18
Show

In the rapidly evolving field of artificial intelligence (AI), the application of large language models (LLMs) in agriculture, particularly in pest management, remains nascent. We aimed to prove the feasibility by evaluating the content of the pest management advice generated by LLMs, including the Generative Pre-trained Transformer (GPT) series from OpenAI and the FLAN series from Google. Considering the context-specific properties of agricultural advice, automatically measuring or quantifying the quality of text generated by LLMs becomes a significant challenge. We proposed an innovative approach, using GPT-4 as an evaluator, to score the generated content on Coherence, Logical Consistency, Fluency, Relevance, Comprehensibility, and Exhaustiveness. Additionally, we integrated an expert system based on crop threshold data as a baseline to obtain scores for Factual Accuracy on whether pests found in crop fields should take management action. Each model's score was weighted by percentage to obtain a final score. The results showed that GPT-3.4 and GPT-4 outperform the FLAN models in most evaluation categories. Furthermore, the use of instruction-based prompting containing domain-specific knowledge proved the feasibility of LLMs as an effective tool in agriculture, with an accuracy rate of 72%, demonstrating LLMs' effectiveness in providing pest management suggestions.

Large Language Models and Foundation Models in Smart Agriculture: Basics, Opportunities, and Challenges 2024-03-17
Show

The past decade has witnessed the rapid development and adoption of ML & DL methodologies in agricultural systems, showcased by great successes in agricultural applications. However, these conventional ML/DL models have certain limitations: they heavily rely on large, costly-to-acquire labeled datasets for training, require specialized expertise for development and maintenance, and are mostly tailored for specific tasks, thus lacking generalizability. Recently, large pre-trained models, also known as FMs, have demonstrated remarkable successes in language, vision, and decision-making tasks across various domains. These models are trained on a large amount of data from multiple domains and modalities. Once trained, they can accomplish versatile tasks with just minor fine-tuning and minimal task-specific labeled data. Despite their proven effectiveness and huge potential, there has been little exploration of applying FMs to agriculture AI. Thus, this study aims to explore the potential of FMs in the field of smart agriculture. In particular, conceptual tools and technical background are presented to help the understanding of the problem space and uncover new research directions. To this end, recent FMs in the general CS domain are reviewed, and the models are categorized into four categories: language FMs, vision FMs, multimodal FMs, and reinforcement learning FMs. Then, the steps of developing agriculture FMs (AFMs) are outlined and potential applications in smart agriculture are discussed. Moreover, challenges and risks associated with developing AFMs are discussed, including model training, validation, and deployment. In summary, the advancement of AI in agriculture is explored by introducing AFMs as a promising paradigm that can significantly mitigate the reliance on extensive labeled datasets and enhance the efficiency, effectiveness, and generalization of agricultural AI systems.

18 pages, 3 figures
eKichabi v2: Designing and Scaling a Dual-Platform Agricultural Technology in Rural Tanzania 2024-03-15
Show

Although farmers in Sub-Saharan Africa are accessing feature phones and smartphones at historically high rates, they face challenges finding a robust network of agricultural contacts. With collaborators, we conduct a quantitative survey of 1014 agricultural households in Kagera, Tanzania to characterize technology access, use, and comfort levels in the region. Recognizing the paucity of research on dual-platform technologies that cater to both feature phone and smartphone users, we develop and deploy eKichabi v2, a searchable directory of 9833 agriculture-related enterprises accessible via a USSD application and an Android application. To bridge the gap in affordances between the two applications, we conduct a mixed methods pilot leveraging mobile money agents as intermediators for our USSD application's users. Through our investigations, we identify the advantages, obstacles, and critical considerations in the design, implementation, and scalability of agricultural information systems tailored to both feature phone and smartphone users in Sub-Saharan Africa.

Innovations in Agricultural Forecasting: A Multivariate Regression Study on Global Crop Yield Prediction 2024-03-14
Show

The prediction of crop yields internationally is a crucial objective in agricultural research. Thus, this study implements 6 regression models (Linear, Tree, Gradient Descent, Gradient Boosting, K Nearest Neighbors, and Random Forest) to predict crop yields in 37 developing countries over 27 years. Given 4 key training parameters, insecticides (tonnes), rainfall (mm), temperature (Celsius), and yield (hg/ha), it was found that our Random Forest Regression model achieved a determination coefficient (r2) of 0.94, with a margin of error (ME) of .03. The models were trained and tested using the Food and Agricultural Organization of the United Nations data, along with the World Bank Climate Change Data Catalog. Furthermore, each parameter was analyzed to understand how varying factors could impact overall yield. We used unconventional models, contrary to generally used Deep Learning (DL) and Machine Learning (ML) models, combined with recently collected data to implement a unique approach in our research. Existing scholarship would benefit from understanding the most optimal model for agricultural research, specifically using the United Nations data.

12 pa...

12 pages, 8 figures, 1 table, Guided by Dr. Aditya Undurti

The indoor agriculture industry: a promising player in demand response services 2024-03-13
Show

Demand response (DR) programs currently cover about 2% of the average annual global demand, which is far from contributing to the International Energy Agency's ``Net Zero by 2050'' roadmap's 20% target. While aggregation of many small flexible loads such as individual households can help reaching this target, increasing the participation of industries that are major electricity consumers is certainly a way forward. The indoor agriculture sector currently experiences a significant growth to partake in the sustainable production of high-quality food world-wide. As energy-related costs, up to 40% of the total expenses, may preclude full maturity of this industry, DR participation can result in a win-win situation. Indeed, the agriculture system must transform and become a sustainable source of food for an increasing number of people worldwide under the constraints of preservation of soils and water, carbon footprint, and energy efficiency. We considered the case of the Russian Federation where indoor farming is burgeoning and already represents a load of several thousand megawatts. To show the viability of the indoor farming industry participation in implicit and explicit DR programs, we built a physical model of a vertical farm inside a phytotron with complete control of environmental parameters including ambient temperature, relative humidity, CO$_2$ concentration, and photosynthetic photon flux density. This phytotron was used as a model greenhouse. We grew different varieties of leafy plants under simulated DR conditions and control conditions on the same setup. Our results show that the indoor farming dedicated to greens can participate in DR without adversely affecting plant production and that this presents an economic advantage.

A Review of Cybersecurity Incidents in the Food and Agriculture Sector 2024-03-12
Show

The increasing utilization of emerging technologies in the Food & Agriculture (FA) sector has heightened the need for security to minimize cyber risks. Considering this aspect, this manuscript reviews disclosed and documented cybersecurity incidents in the FA sector. For this purpose, thirty cybersecurity incidents were identified, which took place between July 2011 and April 2023. The details of these incidents are reported from multiple sources such as: the private industry and flash notifications generated by the Federal Bureau of Investigation (FBI), internal reports from the affected organizations, and available media sources. Considering the available information, a brief description of the security threat, ransom amount, and impact on the organization are discussed for each incident. This review reports an increased frequency of cybersecurity threats to the FA sector. To minimize these cyber risks, popular cybersecurity frameworks and recent agriculture-specific cybersecurity solutions are also discussed. Further, the need for AI assurance in the FA sector is explained, and the Farmer-Centered AI (FCAI) framework is proposed. The main aim of the FCAI framework is to support farmers in decision-making for agricultural production, by incorporating AI assurance. Lastly, the effects of the reported cyber incidents on other critical infrastructures, food security, and the economy are noted, along with specifying the open issues for future development.

Prepr...

Preprint. Submitted for journal publication

Multi-objective Optimization for Data Collection in UAV-assisted Agricultural IoT 2024-03-03
Show

The ground fixed base stations (BSs) are often deployed inflexibly, and have high overheads, as well as are susceptible to the damage from natural disasters, making it impractical for them to continuously collect data from sensor devices. To improve the network coverage and performance of wireless communication, unmanned aerial vehicles (UAVs) have been introduced in diverse wireless networks, therefore in this work we consider employing a UAV as an aerial BS to acquire data of agricultural Internet of Things (IoT) devices. To this end, we first formulate a UAV-assisted data collection multi-objective optimization problem (UDCMOP) to efficiently collect the data from agricultural sensing devices. Specifically, we aim to collaboratively optimize the hovering positions of UAV, visit sequence of UAV, speed of UAV, in addition to the transmit power of devices, to simultaneously achieve the maximization of minimum transmit rate of devices, the minimization of total energy consumption of devices, and the minimization of total energy consumption of UAV. Second, the proposed UDCMOP is a non-convex mixed integer nonlinear optimization problem, which indicates that it includes continuous and discrete solutions, making it intractable to be solved. Therefore, we solve it by proposing an improved multi-objective artificial hummingbird algorithm (IMOAHA) with several specific improvement factors, that are the hybrid initialization operator, Cauchy mutation foraging operator, in addition to the discrete mutation operator. Finally, simulations are carried out to testify that the proposed IMOAHA can effectively improve the system performance comparing to other benchmarks.

13 pa...

13 pages, 7 figures, 4 tables

Hefty: A Modular Reconfigurable Robot for Advancing Robot Manipulation in Agriculture 2024-02-28
Show

This paper presents a modular, reconfigurable robot platform for robot manipulation in agriculture. While robot manipulation promises great advancements in automating challenging, complex tasks that are currently best left to humans, it is also an expensive capital investment for researchers and users because it demands significantly varying robot configurations depending on the task. Modular robots provide a way to obtain multiple configurations and reduce costs by enabling incremental acquisition of only the necessary modules. The robot we present, Hefty, is designed to be modular and reconfigurable. It is designed for both researchers and end-users as a means to improve technology transfer from research to real-world application. This paper provides a detailed design and integration process, outlining the critical design decisions that enable modularity in the mobility of the robot as well as its sensor payload, power systems, computing, and fixture mounting. We demonstrate the utility of the robot by presenting five configurations used in multiple real-world agricultural robotics applications.

8 pages, 11 figures
Selection of appropriate multispectral camera exposure settings and radiometric calibration methods for applications in phenotyping and precision agriculture 2024-02-28
Show

Radiometric accuracy of data is crucial in quantitative precision agriculture, to produce reliable and repeatable data for modeling and decision making. The effect of exposure time and gain settings on the radiometric accuracy of multispectral images was not explored enough. The goal of this study was to determine if having a fixed exposure (FE) time during image acquisition improved radiometric accuracy of images, compared to the default auto-exposure (AE) settings. This involved quantifying the errors from auto-exposure and determining ideal exposure values within which radiometric mean absolute percentage error (MAPE) were minimal (< 5%). The results showed that FE orthomosaic was closer to ground-truth (higher R2 and lower MAPE) than AE orthomosaic. An ideal exposure range was determined for capturing canopy and soil objects, without loss of information from under-exposure or saturation from over-exposure. A simulation of errors from AE showed that MAPE < 5% for the blue, green, red, and NIR bands and < 7% for the red edge band for exposure settings within the determined ideal ranges and increased exponentially beyond the ideal exposure upper limit. Further, prediction of total plant nitrogen uptake (g/plant) using vegetation indices (VIs) from two different growing seasons were closer to the ground truth (mostly, R2 > 0.40, and MAPE = 12 to 14%, p < 0.05) when FE was used, compared to the prediction from AE images (mostly, R2 < 0.13, MAPE = 15 to 18%, p >= 0.05).

Challenging the Black Box: A Comprehensive Evaluation of Attribution Maps of CNN Applications in Agriculture and Forestry 2024-02-18
Show

In this study, we explore the explainability of neural networks in agriculture and forestry, specifically in fertilizer treatment classification and wood identification. The opaque nature of these models, often considered 'black boxes', is addressed through an extensive evaluation of state-of-the-art Attribution Maps (AMs), also known as class activation maps (CAMs) or saliency maps. Our comprehensive qualitative and quantitative analysis of these AMs uncovers critical practical limitations. Findings reveal that AMs frequently fail to consistently highlight crucial features and often misalign with the features considered important by domain experts. These discrepancies raise substantial questions about the utility of AMs in understanding the decision-making process of neural networks. Our study provides critical insights into the trustworthiness and practicality of AMs within the agriculture and forestry sectors, thus facilitating a better understanding of neural networks in these application areas.

Intelligent Agricultural Management Considering N$_2$O Emission and Climate Variability with Uncertainties 2024-02-13
Show

This study examines how artificial intelligence (AI), especially Reinforcement Learning (RL), can be used in farming to boost crop yields, fine-tune nitrogen use and watering, and reduce nitrate runoff and greenhouse gases, focusing on Nitrous Oxide (N$_2$O) emissions from soil. Facing climate change and limited agricultural knowledge, we use Partially Observable Markov Decision Processes (POMDPs) with a crop simulator to model AI agents' interactions with farming environments. We apply deep Q-learning with Recurrent Neural Network (RNN)-based Q networks for training agents on optimal actions. Also, we develop Machine Learning (ML) models to predict N$_2$O emissions, integrating these predictions into the simulator. Our research tackles uncertainties in N$_2$O emission estimates with a probabilistic ML approach and climate variability through a stochastic weather model, offering a range of emission outcomes to improve forecast reliability and decision-making. By incorporating climate change effects, we enhance agents' climate adaptability, aiming for resilient agricultural practices. Results show these agents can align crop productivity with environmental concerns by penalizing N$_2$O emissions, adapting effectively to climate shifts like warmer temperatures and less rain. This strategy improves farm management under climate change, highlighting AI's role in sustainable agriculture.

Value-based Resource Matching with Fairness Criteria: Application to Agricultural Water Trading 2024-02-12
Show

Optimal allocation of agricultural water in the event of droughts is an important global problem. In addressing this problem, many aspects, including the welfare of farmers, the economy, and the environment, must be considered. Under this backdrop, our work focuses on several resource-matching problems accounting for agents with multi-crop portfolios, geographic constraints, and fairness. First, we address a matching problem where the goal is to maximize a welfare function in two-sided markets where buyers' requirements and sellers' supplies are represented by value functions that assign prices (or costs) to specified volumes of water. For the setting where the value functions satisfy certain monotonicity properties, we present an efficient algorithm that maximizes a social welfare function. When there are minimum water requirement constraints, we present a randomized algorithm which ensures that the constraints are satisfied in expectation. For a single seller--multiple buyers setting with fairness constraints, we design an efficient algorithm that maximizes the minimum level of satisfaction of any buyer. We also present computational complexity results that highlight the limits on the generalizability of our results. We evaluate the algorithms developed in our work with experiments on both real-world and synthetic data sets with respect to drought severity, value functions, and seniority of agents.

RAG vs Fine-tuning: Pipelines, Tradeoffs, and a Case Study on Agriculture 2024-01-30
Show

There are two common ways in which developers are incorporating proprietary and domain-specific data when building applications of Large Language Models (LLMs): Retrieval-Augmented Generation (RAG) and Fine-Tuning. RAG augments the prompt with the external data, while fine-Tuning incorporates the additional knowledge into the model itself. However, the pros and cons of both approaches are not well understood. In this paper, we propose a pipeline for fine-tuning and RAG, and present the tradeoffs of both for multiple popular LLMs, including Llama2-13B, GPT-3.5, and GPT-4. Our pipeline consists of multiple stages, including extracting information from PDFs, generating questions and answers, using them for fine-tuning, and leveraging GPT-4 for evaluating the results. We propose metrics to assess the performance of different stages of the RAG and fine-Tuning pipeline. We conduct an in-depth study on an agricultural dataset. Agriculture as an industry has not seen much penetration of AI, and we study a potentially disruptive application - what if we could provide location-specific insights to a farmer? Our results show the effectiveness of our dataset generation pipeline in capturing geographic-specific knowledge, and the quantitative and qualitative benefits of RAG and fine-tuning. We see an accuracy increase of over 6 p.p. when fine-tuning the model and this is cumulative with RAG, which increases accuracy by 5 p.p. further. In one particular experiment, we also demonstrate that the fine-tuned model leverages information from across geographies to answer specific questions, increasing answer similarity from 47% to 72%. Overall, the results point to how systems built using LLMs can be adapted to respond and incorporate knowledge across a dimension that is critical for a specific industry, paving the way for further applications of LLMs in other industrial domains.

Real-time object detection and robotic manipulation for agriculture using a YOLO-based learning approach 2024-01-28
Show

The optimisation of crop harvesting processes for commonly cultivated crops is of great importance in the aim of agricultural industrialisation. Nowadays, the utilisation of machine vision has enabled the automated identification of crops, leading to the enhancement of harvesting efficiency, but challenges still exist. This study presents a new framework that combines two separate architectures of convolutional neural networks (CNNs) in order to simultaneously accomplish the tasks of crop detection and harvesting (robotic manipulation) inside a simulated environment. Crop images in the simulated environment are subjected to random rotations, cropping, brightness, and contrast adjustments to create augmented images for dataset generation. The you only look once algorithmic framework is employed with traditional rectangular bounding boxes for crop localization. The proposed method subsequently utilises the acquired image data via a visual geometry group model in order to reveal the grasping positions for the robotic manipulation.

7 pages, 9 figures
Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review 2024-01-18
Show

Vision is a major component in several digital technologies and tools used in agriculture. The object detector, You Look Only Once (YOLO), has gained popularity in agriculture in a relatively short span due to its state-of-the-art performance. YOLO offers real-time detection with good accuracy and is implemented in various agricultural tasks, including monitoring, surveillance, sensing, automation, and robotics. The research and application of YOLO in agriculture are accelerating rapidly but are fragmented and multidisciplinary. Moreover, the performance characteristics (i.e., accuracy, speed, computation) of the object detector influence the rate of technology implementation and adoption in agriculture. Thus, the study aims to collect extensive literature to document and critically evaluate the advances and application of YOLO for agricultural object recognition. First, we conducted a bibliometric review of 257 articles to understand the scholarly landscape of YOLO in agricultural domain. Secondly, we conducted a systematic review of 30 articles to identify current knowledge, gaps, and modifications in YOLO for specific agricultural tasks. The study critically assesses and summarizes the information on YOLO's end-to-end learning approach, including data acquisition, processing, network modification, integration, and deployment. We also discussed task-specific YOLO algorithm modification and integration to meet the agricultural object or environment-specific challenges. In general, YOLO-integrated digital tools and technologies show the potential for real-time, automated monitoring, surveillance, and object handling to reduce labor, production cost, and environmental impact while maximizing resource efficiency. The study provides detailed documentation and significantly advances the existing knowledge on applying YOLO in agriculture, which can greatly benefit the scientific community.

A Framework for Agricultural Food Supply Chain using Blockchain 2024-01-14
Show

The main aim of the paper is to create a trust and transparency in the food supply chain system, ensuring food safety for everyone with the help of Blockchain Technology. Food supply chain is the process of tracing a crop from the farmer or producer to the buyer. With the advent of blockchain, providing a safe and fraud-free environment for the provision of numerous agricultural necessities has become much easier. Because of the globalization of trade, the present supply chain market today includes various companies involving integration of data, complex transactions and distribution. Information tamper resistance, supply-demand relationships, and traceable oversight are all difficulties that arise as a result of this. Blockchain is a distributed ledger technology that can provide information that is resistant to tampering. This strategy can eliminate the need for a centralized trusted authority, intermediaries, and business histories, allowing for increased production and security while maintaining the highest levels of integrity, liability, and safety. In order to have an integrity and transparency in food supply chain in the agricultural sector, a framework is proposed here based on block chain and IoT.

5 Pag...

5 Pages, 5 figures, Under Review

AGSPNet: A framework for parcel-scale crop fine-grained semantic change detection from UAV high-resolution imagery with agricultural geographic scene constraints 2024-01-11
Show

Real-time and accurate information on fine-grained changes in crop cultivation is of great significance for crop growth monitoring, yield prediction and agricultural structure adjustment. Aiming at the problems of serious spectral confusion in visible high-resolution unmanned aerial vehicle (UAV) images of different phases, interference of large complex background and salt-and-pepper noise by existing semantic change detection (SCD) algorithms, in order to effectively extract deep image features of crops and meet the demand of agricultural practical engineering applications, this paper designs and proposes an agricultural geographic scene and parcel-scale constrained SCD framework for crops (AGSPNet). AGSPNet framework contains three parts: agricultural geographic scene (AGS) division module, parcel edge extraction module and crop SCD module. Meanwhile, we produce and introduce an UAV image SCD dataset (CSCD) dedicated to agricultural monitoring, encompassing multiple semantic variation types of crops in complex geographical scene. We conduct comparative experiments and accuracy evaluations in two test areas of this dataset, and the results show that the crop SCD results of AGSPNet consistently outperform other deep learning SCD models in terms of quantity and quality, with the evaluation metrics F1-score, kappa, OA, and mIoU obtaining improvements of 0.038, 0.021, 0.011 and 0.062, respectively, on average over the sub-optimal method. The method proposed in this paper can clearly detect the fine-grained change information of crop types in complex scenes, which can provide scientific and technical support for smart agriculture monitoring and management, food policy formulation and food security assurance.

DedustNet: A Frequency-dominated Swin Transformer-based Wavelet Network for Agricultural Dust Removal 2024-01-09
Show

While dust significantly affects the environmental perception of automated agricultural machines, the existing deep learning-based methods for dust removal require further research and improvement in this area to improve the performance and reliability of automated agricultural machines in agriculture. We propose an end-to-end trainable learning network (DedustNet) to solve the real-world agricultural dust removal task. To our knowledge, DedustNet is the first time Swin Transformer-based units have been used in wavelet networks for agricultural image dusting. Specifically, we present the frequency-dominated block (DWTFormer block and IDWTFormer block) by adding a spatial features aggregation scheme (SFAS) to the Swin Transformer and combining it with the wavelet transform, the DWTFormer block and IDWTFormer block, alleviating the limitation of the global receptive field of Swin Transformer when dealing with complex dusty backgrounds. Furthermore, We propose a cross-level information fusion module to fuse different levels of features and effectively capture global and long-range feature relationships. In addition, we present a dilated convolution module to capture contextual information guided by wavelet transform at multiple scales, which combines the advantages of wavelet transform and dilated convolution. Our algorithm leverages deep learning techniques to effectively remove dust from images while preserving the original structural and textural features. Compared to existing state-of-the-art methods, DedustNet achieves superior performance and more reliable results in agricultural image dedusting, providing strong support for the application of agricultural machinery in dusty environments. Additionally, the impressive performance on real-world hazy datasets and application tests highlights DedustNet superior generalization ability and computer vision-related application performance.

arXiv...

arXiv admin note: substantial text overlap with arXiv:2401.04550

Harnessing Artificial Intelligence for Sustainable Agricultural Development in Africa: Opportunities, Challenges, and Impact 2024-01-03
Show

This paper explores the transformative potential of artificial intelligence (AI) in the context of sustainable agricultural development across diverse regions in Africa. Delving into opportunities, challenges, and impact, the study navigates through the dynamic landscape of AI applications in agriculture. Opportunities such as precision farming, crop monitoring, and climate-resilient practices are examined, alongside challenges related to technological infrastructure, data accessibility, and skill gaps. The article analyzes the impact of AI on smallholder farmers, supply chains, and inclusive growth. Ethical considerations and policy implications are also discussed, offering insights into responsible AI integration. By providing a nuanced understanding, this paper contributes to the ongoing discourse on leveraging AI for fostering sustainability in African agriculture.

Learning-based agricultural management in partially observable environments subject to climate variability 2024-01-02
Show

Agricultural management, with a particular focus on fertilization strategies, holds a central role in shaping crop yield, economic profitability, and environmental sustainability. While conventional guidelines offer valuable insights, their efficacy diminishes when confronted with extreme weather conditions, such as heatwaves and droughts. In this study, we introduce an innovative framework that integrates Deep Reinforcement Learning (DRL) with Recurrent Neural Networks (RNNs). Leveraging the Gym-DSSAT simulator, we train an intelligent agent to master optimal nitrogen fertilization management. Through a series of simulation experiments conducted on corn crops in Iowa, we compare Partially Observable Markov Decision Process (POMDP) models with Markov Decision Process (MDP) models. Our research underscores the advantages of utilizing sequential observations in developing more efficient nitrogen input policies. Additionally, we explore the impact of climate variability, particularly during extreme weather events, on agricultural outcomes and management. Our findings demonstrate the adaptability of fertilization policies to varying climate conditions. Notably, a fixed policy exhibits resilience in the face of minor climate fluctuations, leading to commendable corn yields, cost-effectiveness, and environmental conservation. However, our study illuminates the need for agent retraining to acquire new optimal policies under extreme weather events. This research charts a promising course toward adaptable fertilization strategies that can seamlessly align with dynamic climate scenarios, ultimately contributing to the optimization of crop management practices.

Agricultural 4.0 Leveraging on Technological Solutions: Study for Smart Farming Sector 2024-01-01
Show

By 2050, it is predicted that there will be 9 billion people on the planet, which will call for more production, lower costs, and the preservation of natural resources. It is anticipated that atypical occurrences and climate change will pose severe risks to agricultural output. It follows that a 70% or more significant rise in food output is anticipated. Smart farming, often known as agriculture 4.0, is a tech-driven revolution in agriculture with the goal of raising industry production and efficiency. Four primary trends are responsible for it: food waste, climate change, population shifts, and resource scarcity. The agriculture industry is changing as a result of the adoption of emerging technologies. Using cutting-edge technology like IoT, AI, and other sensors, smart farming transforms traditional production methods and international agricultural policies. The objective is to establish a value chain that is optimized to facilitate enhanced monitoring and decreased labor expenses. The agricultural sector has seen tremendous transformation as a result of the fourth industrial revolution, which has combined traditional farming methods with cutting-edge technology to increase productivity, sustainability, and efficiency. To effectively utilize the potential of technology gadgets in the agriculture sector, collaboration between governments, private sector entities, and other stakeholders is necessary. This paper covers Agriculture 4.0, looks at its possible benefits and drawbacks of the implementation methodologies, compatibility, reliability, and investigates the several digital tools that are being utilized to change the agriculture industry and how to mitigate the challenges.

9 pag...

9 pages, 4 figures, under reviewing process

On the Promises and Challenges of Multimodal Foundation Models for Geographical, Environmental, Agricultural, and Urban Planning Applications 2023-12-23
Show

The advent of large language models (LLMs) has heightened interest in their potential for multimodal applications that integrate language and vision. This paper explores the capabilities of GPT-4V in the realms of geography, environmental science, agriculture, and urban planning by evaluating its performance across a variety of tasks. Data sources comprise satellite imagery, aerial photos, ground-level images, field images, and public datasets. The model is evaluated on a series of tasks including geo-localization, textual data extraction from maps, remote sensing image classification, visual question answering, crop type identification, disease/pest/weed recognition, chicken behavior analysis, agricultural object counting, urban planning knowledge question answering, and plan generation. The results indicate the potential of GPT-4V in geo-localization, land cover classification, visual question answering, and basic image understanding. However, there are limitations in several tasks requiring fine-grained recognition and precise counting. While zero-shot learning shows promise, performance varies across problem domains and image complexities. The work provides novel insights into GPT-4V's capabilities and limitations for real-world geospatial, environmental, agricultural, and urban planning challenges. Further research should focus on augmenting the model's knowledge and reasoning for specialized domains through expanded training. Overall, the analysis demonstrates foundational multimodal intelligence, highlighting the potential of multimodal foundation models (FMs) to advance interdisciplinary applications at the nexus of computer vision and language.

110 P...

110 Pages; 61 Figures

A utility belt for an agricultural robot: reflection-in-action for applied design research 2023-12-22
Show

Clothing for robots can help expand a robot's functionality and also clarify the robot's purpose to bystanders. In studying how to design clothing for robots, we can shed light on the functional role of aesthetics in interactive system design. We present a case study of designing a utility belt for an agricultural robot. We use reflection-in-action to consider the ways that observation, in situ making, and documentation serve to illuminate how pragmatic, aesthetic, and intellectual inquiry are layered in this applied design research project. Themes explored in this pictorial include 1) contextual discovery of materials, tools, and practices, 2) design space exploration of materials in context, 3) improvising spaces for making, and 4) social processes in design. These themes emerged from the qualitative coding of 25 reflection-in-action videos from the researcher. We conclude with feedback on the utility belt prototypes for an agriculture robot and our learnings about context, materials, and people needed to design successful novel clothing forms for robots.

Smart Connected Farms and Networked Farmers to Tackle Climate Challenges Impacting Agricultural Production 2023-12-19
Show

To meet the grand challenges of agricultural production including climate change impacts on crop production, a tight integration of social science, technology and agriculture experts including farmers are needed. There are rapid advances in information and communication technology, precision agriculture and data analytics, which are creating a fertile field for the creation of smart connected farms (SCF) and networked farmers. A network and coordinated farmer network provides unique advantages to farmers to enhance farm production and profitability, while tackling adverse climate events. The aim of this article is to provide a comprehensive overview of the state of the art in SCF including the advances in engineering, computer sciences, data sciences, social sciences and economics including data privacy, sharing and technology adoption.

Overcome the Fear Of Missing Out: Active Sensing UAV Scanning for Precision Agriculture 2023-12-15
Show

This paper deals with the problem of informative path planning for a UAV deployed for precision agriculture applications. First, we observe that the ``fear of missing out'' data lead to uniform, conservative scanning policies over the whole agricultural field. Consequently, employing a non-uniform scanning approach can mitigate the expenditure of time in areas with minimal or negligible real value, while ensuring heightened precision in information-dense regions. Turning to the available informative path planning methodologies, we discern that certain methods entail intensive computational requirements, while others necessitate training on an ideal world simulator. To address the aforementioned issues, we propose an active sensing coverage path planning approach, named OverFOMO, that regulates the speed of the UAV in accordance with both the relative quantity of the identified classes, i.e. crops and weeds, and the confidence level of such detections. To identify these instances, a robust Deep Learning segmentation model is deployed. The computational needs of the proposed algorithm are independent of the size of the agricultural field, rendering its applicability on modern UAVs quite straightforward. The proposed algorithm was evaluated with a simu-realistic pipeline, combining data from real UAV missions and the high-fidelity dynamics of AirSim simulator, showcasing its performance improvements over the established state of affairs for this type of missions. An open-source implementation of the algorithm and the evaluation pipeline is also available: \url{https://github.com/emmarapt/OverFOMO}.

Facilitating Digital Agriculture with Simple Databases 2023-12-11
Show

As an on-ramp to databases, we offer several well-structured private database templates as open source resources for agriculturalists, particularly those with modest spreadsheet skills. These farmer-oriented Air table databases use simple data-validated forms, with the look and feel of a customized app, to yield operational data that is tidy, machine- and human-readable, editable, and exportable for analysis in other software. Such data can facilitate logistics, provide contextual metadata, and improve enterprise analysis. A recorded workshop explaining how to build a database for activity records is presented. These resources may facilitate infusion of digital agriculture principles through Extension and structured educational programming.

6 pag...

6 pages, 1 table, 1 figure. Journal of Extension Tools of the Trade, in press

Multi-agricultural Machinery Collaborative Task Assignment Based on Improved Genetic Hybrid Optimization Algorithm 2023-12-07
Show

To address the challenges of delayed scheduling information, heavy reliance on manual labour, and low operational efficiency in traditional large-scale agricultural machinery operations, this study proposes a method for multi-agricultural machinery collaborative task assignment based on an improved genetic hybrid optimisation algorithm. The proposed method establishes a multi-agricultural machinery task allocation model by combining the path pre-planning of a simulated annealing algorithm and the static task allocation of a genetic algorithm. By sequentially fusing these two algorithms, their respective shortcomings can be overcome, and their advantages in global and local search can be utilised. Consequently, the search capability of the population is enhanced, leading to the discovery of more optimal solutions. Then, an adaptive crossover operator is constructed according to the task assignment model, considering the capacity, path cost, and time of agricultural machinery; two-segment coding and multi-population adaptive mutation are used to assign tasks to improve the diversity of the population and enhance the exploration ability of the population; and to improve the global optimisation ability of the hybrid algorithm, a 2-Opt local optimisation operator and an Circle modification algorithm are introduced. Finally, simulation experiments were conducted in MATLAB to evaluate the performance of the multi-agricultural machinery collaborative task assignment based on the improved genetic hybrid algorithm. The algorithm's capabilities were assessed through comparative analysis in the simulation trials. The results demonstrate that the developed hybrid algorithm can effectively reduce path costs, and the efficiency of the assignment outcomes surpasses that of the classical genetic algorithm. This approach proves particularly suitable for addressing large-scale task allocation problems.

Data-Centric Digital Agriculture: A Perspective 2023-12-06
Show

In response to the increasing global demand for food, feed, fiber, and fuel, digital agriculture is rapidly evolving to meet these demands while reducing environmental impact. This evolution involves incorporating data science, machine learning, sensor technologies, robotics, and new management strategies to establish a more sustainable agricultural framework. So far, machine learning research in digital agriculture has predominantly focused on model-centric approaches, focusing on model design and evaluation. These efforts aim to optimize model accuracy and efficiency, often treating data as a static benchmark. Despite the availability of agricultural data and methodological advancements, a saturation point has been reached, with many established machine learning methods achieving comparable levels of accuracy and facing similar limitations. To fully realize the potential of digital agriculture, it is crucial to have a comprehensive understanding of the role of data in the field and to adopt data-centric machine learning. This involves developing strategies to acquire and curate valuable data and implementing effective learning and evaluation strategies that utilize the intrinsic value of data. This approach has the potential to create accurate, generalizable, and adaptable machine learning methods that effectively and sustainably address agricultural tasks such as yield prediction, weed detection, and early disease identification

Can SAM recognize crops? Quantifying the zero-shot performance of a semantic segmentation foundation model on generating crop-type maps using satellite imagery for precision agriculture 2023-12-04
Show

Climate change is increasingly disrupting worldwide agriculture, making global food production less reliable. To tackle the growing challenges in feeding the planet, cutting-edge management strategies, such as precision agriculture, empower farmers and decision-makers with rich and actionable information to increase the efficiency and sustainability of their farming practices. Crop-type maps are key information for decision-support tools but are challenging and costly to generate. We investigate the capabilities of Meta AI's Segment Anything Model (SAM) for crop-map prediction task, acknowledging its recent successes at zero-shot image segmentation. However, SAM being limited to up-to 3 channel inputs and its zero-shot usage being class-agnostic in nature pose unique challenges in using it directly for crop-type mapping. We propose using clustering consensus metrics to assess SAM's zero-shot performance in segmenting satellite imagery and producing crop-type maps. Although direct crop-type mapping is challenging using SAM in zero-shot setting, experiments reveal SAM's potential for swiftly and accurately outlining fields in satellite images, serving as a foundation for subsequent crop classification. This paper attempts to highlight a use-case of state-of-the-art image segmentation models like SAM for crop-type mapping and related specific needs of the agriculture industry, offering a potential avenue for automatic, efficient, and cost-effective data products for precision agriculture practices.

Accep...

Accepted at NeurIPS 2023 AI for Science Workshop

Advances in soft grasping in agriculture 2023-11-30
Show

Agricultural robotics and automation are facing some challenges rooted in the high variability 9 of products, task complexity, crop quality requirement, and dense vegetation. Such a set of 10 challenges demands a more versatile and safe robotic system. Soft robotics is a young yet 11 promising field of research aimed to enhance these aspects of current rigid robots which 12 makes it a good candidate solution for that challenge. In general, it aimed to provide robots 13 and machines with adaptive locomotion (Ansari et al., 2015), safe and adaptive manipulation 14 (Arleo et al., 2020) and versatile grasping (Langowski et al., 2020). But in agriculture, soft 15 robots have been mainly used in harvesting tasks and more specifically in grasping. In this 16 chapter, we review a candidate group of soft grippers that were used for handling and 17 harvesting crops regarding agricultural challenges i.e. safety in handling and adaptability to 18 the high variation of crops. The review is aimed to show why and to what extent soft grippers 19 have been successful in handling agricultural tasks. The analysis carried out on the results 20 provides future directions for the systematic design of soft robots in agricultural tasks.

Chapt...

Chapter 12 of the book entitled "Advances in agri-food robotics"

Privacy-Preserving Data Sharing in Agriculture: Enforcing Policy Rules for Secure and Confidential Data Synthesis 2023-11-27
Show

Big Data empowers the farming community with the information needed to optimize resource usage, increase productivity, and enhance the sustainability of agricultural practices. The use of Big Data in farming requires the collection and analysis of data from various sources such as sensors, satellites, and farmer surveys. While Big Data can provide the farming community with valuable insights and improve efficiency, there is significant concern regarding the security of this data as well as the privacy of the participants. Privacy regulations, such as the EU GDPR, the EU Code of Conduct on agricultural data sharing by contractual agreement, and the proposed EU AI law, have been created to address the issue of data privacy and provide specific guidelines on when and how data can be shared between organizations. To make confidential agricultural data widely available for Big Data analysis without violating the privacy of the data subjects, we consider privacy-preserving methods of data sharing in agriculture. Deep learning-based synthetic data generation has been proposed for privacy-preserving data sharing. However, there is a lack of compliance with documented data privacy policies in such privacy-preserving efforts. In this study, we propose a novel framework for enforcing privacy policy rules in privacy-preserving data generation algorithms. We explore several available agricultural codes of conduct, extract knowledge related to the privacy constraints in data, and use the extracted knowledge to define privacy bounds in a privacy-preserving generative model. We use our framework to generate synthetic agricultural data and present experimental results that demonstrate the utility of the synthetic dataset in downstream tasks. We also show that our framework can evade potential threats and secure data based on applicable regulatory policy rules.

Precision Agriculture: Crop Mapping using Machine Learning and Sentinel-2 Satellite Imagery 2023-11-25
Show

Food security has grown in significance due to the changing climate and its warming effects. To support the rising demand for agricultural products and to minimize the negative impact of climate change and mass cultivation, precision agriculture has become increasingly important for crop cultivation. This study employs deep learning and pixel-based machine learning methods to accurately segment lavender fields for precision agriculture, utilizing various spectral band combinations extracted from Sentinel-2 satellite imagery. Our fine-tuned final model, a U-Net architecture, can achieve a Dice coefficient of 0.8324. Additionally, our investigation highlights the unexpected efficacy of the pixel-based method and the RGB spectral band combination in this task.

The Influence of Neural Networks on Hydropower Plant Management in Agriculture: Addressing Challenges and Exploring Untapped Opportunities 2023-11-22
Show

Hydropower plants are crucial for stable renewable energy and serve as vital water sources for sustainable agriculture. However, it is essential to assess the current water management practices associated with hydropower plant management software. A key concern is the potential conflict between electricity generation and agricultural water needs. Prioritising water for electricity generation can reduce irrigation availability in agriculture during crucial periods like droughts, impacting crop yields and regional food security. Coordination between electricity and agricultural water allocation is necessary to ensure optimal and environmentally sound practices. Neural networks have become valuable tools for hydropower plant management, but their black-box nature raises concerns about transparency in decision making. Additionally, current approaches often do not take advantage of their potential to create a system that effectively balances water allocation. This work is a call for attention and highlights the potential risks of deploying neural network-based hydropower plant management software without proper scrutiny and control. To address these concerns, we propose the adoption of the Agriculture Conscious Hydropower Plant Management framework, aiming to maximise electricity production while prioritising stable irrigation for agriculture. We also advocate reevaluating government-imposed minimum water guidelines for irrigation to ensure flexibility and effective water allocation. Additionally, we suggest a set of regulatory measures to promote model transparency and robustness, certifying software that makes conscious and intelligent water allocation decisions, ultimately safeguarding agriculture from undue strain during droughts.

AI for Agriculture: the Comparison of Semantic Segmentation Methods for Crop Mapping with Sentinel-2 Imagery 2023-11-21
Show

Crop mapping is one of the most common tasks in artificial intelligence for agriculture due to higher food demands from a growing population and increased awareness of climate change. In case of vineyards, the texture is very important for crop segmentation: with higher resolution satellite imagery the texture is easily detected by majority of state-of-the-art algorithms. However, this task becomes increasingly more difficult as the resolution of satellite imagery decreases and the information about the texture becomes unavailable. In this paper we aim to explore the main machine learning methods that can be used with freely available satellite imagery and discuss how and when they can be applied for vineyard segmentation problem. We assess the effectiveness of various widely-used machine learning techniques and offer guidance on selecting the most suitable model for specific scenarios.

A Video-Based Activity Classification of Human Pickers in Agriculture 2023-11-17
Show

In farming systems, harvesting operations are tedious, time- and resource-consuming tasks. Based on this, deploying a fleet of autonomous robots to work alongside farmworkers may provide vast productivity and logistics benefits. Then, an intelligent robotic system should monitor human behavior, identify the ongoing activities and anticipate the worker's needs. In this work, the main contribution consists of creating a benchmark model for video-based human pickers detection, classifying their activities to serve in harvesting operations for different agricultural scenarios. Our solution uses the combination of a Mask Region-based Convolutional Neural Network (Mask R-CNN) for object detection and optical flow for motion estimation with newly added statistical attributes of flow motion descriptors, named as Correlation Sensitivity (CS). A classification criterion is defined based on the Kernel Density Estimation (KDE) analysis and K-means clustering algorithm, which are implemented upon in-house collected dataset from different crop fields like strawberry polytunnels and apple tree orchards. The proposed framework is quantitatively analyzed using sensitivity, specificity, and accuracy measures and shows satisfactory results amidst various dataset challenges such as lighting variation, blur, and occlusions.

4 pag...

4 pages, 6 figures, 3 tables

ChatGPT in the context of precision agriculture data analytics 2023-11-10
Show

In this study we argue that integrating ChatGPT into the data processing pipeline of automated sensors in precision agriculture has the potential to bring several benefits and enhance various aspects of modern farming practices. Policy makers often face a barrier when they need to get informed about the situation in vast agricultural fields to reach to decisions. They depend on the close collaboration between agricultural experts in the field, data analysts, and technology providers to create interdisciplinary teams that cannot always be secured on demand or establish effective communication across these diverse domains to respond in real-time. In this work we argue that the speech recognition input modality of ChatGPT provides a more intuitive and natural way for policy makers to interact with the database of the server of an agricultural data processing system to which a large, dispersed network of automated insect traps and sensors probes reports. The large language models map the speech input to text, allowing the user to form its own version of unconstrained verbal query, raising the barrier of having to learn and adapt oneself to a specific data analytics software. The output of the language model can interact through Python code and Pandas with the entire database, visualize the results and use speech synthesis to engage the user in an iterative and refining discussion related to the data. We show three ways of how ChatGPT can interact with the database of the remote server to which a dispersed network of different modalities (optical counters, vibration recordings, pictures, and video), report. We examine the potential and the validity of the response of ChatGPT in analyzing, and interpreting agricultural data, providing real time insights and recommendations to stakeholders

33 pages, 21 figures
Transforming Agriculture with Intelligent Data Management and Insights 2023-11-07
Show

Modern agriculture faces grand challenges to meet increased demands for food, fuel, feed, and fiber with population growth under the constraints of climate change and dwindling natural resources. Data innovation is urgently required to secure and improve the productivity, sustainability, and resilience of our agroecosystems. As various sensors and Internet of Things (IoT) instrumentation become more available, affordable, reliable, and stable, it has become possible to conduct data collection, integration, and analysis at multiple temporal and spatial scales, in real-time, and with high resolutions. At the same time, the sheer amount of data poses a great challenge to data storage and analysis, and the \textit{de facto} data management and analysis practices adopted by scientists have become increasingly inefficient. Additionally, the data generated from different disciplines, such as genomics, phenomics, environment, agronomy, and socioeconomic, can be highly heterogeneous. That is, datasets across disciplines often do not share the same ontology, modality, or format. All of the above make it necessary to design a new data management infrastructure that implements the principles of Findable, Accessible, Interoperable, and Reusable (FAIR). In this paper, we propose Agriculture Data Management and Analytics (ADMA), which satisfies the FAIR principles. Our new data management infrastructure is intelligent by supporting semantic data management across disciplines, interactive by providing various data management/analysis portals such as web GUI, command line, and API, scalable by utilizing the power of high-performance computing (HPC), extensible by allowing users to load their own data analysis tools, trackable by keeping track of different operations on each file, and open by using a rich set of mature open source technologies.

Exploratory functional data analysis of multivariate densities for the identification of agricultural soil contamination by risk elements 2023-11-06
Show

Geochemical mapping of risk element concentrations in soils is performed in countries around the world. It results in large datasets of high analytical quality, which can be used to identify soils that violate individual legislative limits for safe food production. However, there is a lack of advanced data mining tools that would be suitable for sensitive exploratory data analysis of big data while respecting the natural variability of soil composition. To distinguish anthropogenic contamination from natural variation, the analysis of the entire data distributions for smaller sub-areas is key. In this article, we propose a new data mining method for geochemical mapping data based on functional data analysis of probability density functions in the framework of Bayes spaces after post-stratification of a big dataset to smaller districts. Proposed tools allow us to analyse the entire distribution, going beyond a superficial detection of extreme concentration anomalies. We illustrate the proposed methodology on a dataset gathered according to the Czech national legislation (1990--2009). Taking into account specific properties of probability density functions and recent results for orthogonal decomposition of multivariate densities enabled us to reveal real contamination patterns that were so far only suspected in Czech agricultural soils. We process the above Czech soil composition dataset by first compartmentalising it into spatial units, in particular the districts, and by subsequently clustering these districts according to diagnostic features of their uni- and multivariate distributions at high concentration ends. Comparison between compartments is key to the reliable distinction of diffuse contamination. In this work, we used soil contamination by Cu-bearing pesticides as an example for empirical testing of the proposed data mining approach.

Crop Disease Classification using Support Vector Machines with Green Chromatic Coordinate (GCC) and Attention based feature extraction for IoT based Smart Agricultural Applications 2023-11-06
Show

Crops hold paramount significance as they serve as the primary provider of energy, nutrition, and medicinal benefits for the human population. Plant diseases, however, can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value. Therefore, it is crucial for farmers to identify crop diseases. However, this method frequently necessitates hard work, a lot of planning, and in-depth familiarity with plant pathogens. Given these numerous obstacles, it is essential to provide solutions that can easily interface with mobile and IoT devices so that our farmers can guarantee the best possible crop development. Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection, yielding substantial and promising results. This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance, and the ability to integrate with mobile applications and IoT devices after quantization of information. Several disease classification algorithms were compared with the suggested model, and it was discovered that, in terms of accuracy, Vision Transformer-based feature extraction and additional Green Chromatic Coordinate feature with SVM classification achieved an accuracy of (GCCViT-SVM) - 99.69%, whereas after quantization for IoT device integration achieved an accuracy of - 97.41% while almost reducing 4x in size. Our findings have profound implications because they have the potential to transform how farmers identify crop illnesses with precise and fast information, thereby preserving agricultural output and ensuring food security.

Predicting Agricultural Commodities Prices with Machine Learning: A Review of Current Research 2023-10-28
Show

Agricultural price prediction is crucial for farmers, policymakers, and other stakeholders in the agricultural sector. However, it is a challenging task due to the complex and dynamic nature of agricultural markets. Machine learning algorithms have the potential to revolutionize agricultural price prediction by improving accuracy, real-time prediction, customization, and integration. This paper reviews recent research on machine learning algorithms for agricultural price prediction. We discuss the importance of agriculture in developing countries and the problems associated with crop price falls. We then identify the challenges of predicting agricultural prices and highlight how machine learning algorithms can support better prediction. Next, we present a comprehensive analysis of recent research, discussing the strengths and weaknesses of various machine learning techniques. We conclude that machine learning has the potential to revolutionize agricultural price prediction, but further research is essential to address the limitations and challenges associated with this approach.

Temperature Monitoring of Agricultural Areas in a Secure Data Room 2023-10-27
Show

Agricultural production is highly dependent on naturally occurring environmental conditions like change of seasons and the weather. Especially in fruit and wine growing, late frosts occurring shortly after the crops have sprouted have the potential to cause massive damage to plants [L1,L2] [1]. In this article we present a cost-efficient temperature monitoring system for detecting and reacting to late frosts to prevent crop failures. The proposed solution includes a data space where Internet of Things (IoT) devices can form a cyber-physical system (CPS) to interact with their nearby environment and securely exchange data. Based on this data, more accurate predictions can be made in the future using machine learning (ML), which will further contribute to minimising economic damage caused by crop failures.

Link ...

Link to online article: https://ercim-news.ercim.eu/en135/special/temperature-monitoring-of-agricultural-areas-in-a-secure-data-room

An Efficient Deep Learning-based approach for Recognizing Agricultural Pests in the Wild 2023-10-25
Show

One of the biggest challenges that the farmers go through is to fight insect pests during agricultural product yields. The problem can be solved easily and avoid economic losses by taking timely preventive measures. This requires identifying insect pests in an easy and effective manner. Most of the insect species have similarities between them. Without proper help from the agriculturist academician it is very challenging for the farmers to identify the crop pests accurately. To address this issue we have done extensive experiments considering different methods to find out the best method among all. This paper presents a detailed overview of the experiments done on mainly a robust dataset named IP102 including transfer learning with finetuning, attention mechanism and custom architecture. Some example from another dataset D0 is also shown to show robustness of our experimented techniques.

Climate Change Impact on Agricultural Land Suitability: An Interpretable Machine Learning-Based Eurasia Case Study 2023-10-24
Show

The United Nations has identified improving food security and reducing hunger as essential components of its sustainable development goals. As of 2021, approximately 828 million people worldwide are experiencing hunger and malnutrition, with numerous fatalities reported. Climate change significantly impacts agricultural land suitability, potentially leading to severe food shortages and subsequent social and political conflicts. To address this pressing issue, we have developed a machine learning-based approach to predict the risk of substantial land suitability degradation and changes in irrigation patterns. Our study focuses on Central Eurasia, a region burdened with economic and social challenges. This study represents a pioneering effort in utilizing machine learning methods to assess the impact of climate change on agricultural land suitability under various carbon emissions scenarios. Through comprehensive feature importance analysis, we unveil specific climate and terrain characteristics that exert influence on land suitability. Our approach achieves remarkable accuracy, offering policymakers invaluable insights to facilitate informed decisions aimed at averting a humanitarian crisis, including strategies such as the provision of additional water and fertilizers. This research underscores the tremendous potential of machine learning in addressing global challenges, with a particular emphasis on mitigating hunger and malnutrition.

Machine Learning-based Nutrient Application's Timeline Recommendation for Smart Agriculture: A Large-Scale Data Mining Approach 2023-10-18
Show

This study addresses the vital role of data analytics in monitoring fertiliser applications in crop cultivation. Inaccurate fertiliser application decisions can lead to costly consequences, hinder food production, and cause environmental harm. We propose a solution to predict nutrient application by determining required fertiliser quantities for an entire season. The proposed solution recommends adjusting fertiliser amounts based on weather conditions and soil characteristics to promote cost-effective and environmentally friendly agriculture. The collected dataset is high-dimensional and heterogeneous. Our research examines large-scale heterogeneous datasets in the context of the decision-making process, encompassing data collection and analysis. We also study the impact of fertiliser applications combined with weather data on crop yield, using the winter wheat crop as a case study. By understanding local contextual and geographic factors, we aspire to stabilise or even reduce the demand for agricultural nutrients while enhancing crop development. The proposed approach is proven to be efficient and scalable, as it is validated using a real-world and large dataset.

Resea...

Research articles have: 6 Pages, 6 Figures, and 3 Tables

GPT-4 as an Agronomist Assistant? Answering Agriculture Exams Using Large Language Models 2023-10-12
Show

Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding across various domains, including healthcare and finance. For some tasks, LLMs achieve similar or better performance than trained human beings, therefore it is reasonable to employ human exams (e.g., certification tests) to assess the performance of LLMs. We present a comprehensive evaluation of popular LLMs, such as Llama 2 and GPT, on their ability to answer agriculture-related questions. In our evaluation, we also employ RAG (Retrieval-Augmented Generation) and ER (Ensemble Refinement) techniques, which combine information retrieval, generation capabilities, and prompting strategies to improve the LLMs' performance. To demonstrate the capabilities of LLMs, we selected agriculture exams and benchmark datasets from three of the largest agriculture producer countries: Brazil, India, and the USA. Our analysis highlights GPT-4's ability to achieve a passing score on exams to earn credits for renewing agronomist certifications, answering 93% of the questions correctly and outperforming earlier general-purpose models, which achieved 88% accuracy. On one of our experiments, GPT-4 obtained the highest performance when compared to human subjects. This performance suggests that GPT-4 could potentially pass on major graduate education admission tests or even earn credits for renewing agronomy certificates. We also explore the models' capacity to address general agriculture-related questions and generate crop management guidelines for Brazilian and Indian farmers, utilizing robust datasets from the Brazilian Agency of Agriculture (Embrapa) and graduate program exams from India. The results suggest that GPT-4, ER, and RAG can contribute meaningfully to agricultural education, assessment, and crop management practice, offering valuable insights to farmers and agricultural professionals.

A Survey of Computer Vision Technologies In Urban and Controlled-environment Agriculture 2023-10-12
Show

In the evolution of agriculture to its next stage, Agriculture 5.0, artificial intelligence will play a central role. Controlled-environment agriculture, or CEA, is a special form of urban and suburban agricultural practice that offers numerous economic, environmental, and social benefits, including shorter transportation routes to population centers, reduced environmental impact, and increased productivity. Due to its ability to control environmental factors, CEA couples well with computer vision (CV) in the adoption of real-time monitoring of the plant conditions and autonomous cultivation and harvesting. The objective of this paper is to familiarize CV researchers with agricultural applications and agricultural practitioners with the solutions offered by CV. We identify five major CV applications in CEA, analyze their requirements and motivation, and survey the state of the art as reflected in 68 technical papers using deep learning methods. In addition, we discuss five key subareas of computer vision and how they related to these CEA problems, as well as eleven vision-based CEA datasets. We hope the survey will help researchers quickly gain a bird-eye view of the striving research area and will spark inspiration for new research and development.

1 ove...

1 overview figures, 37 pages, 8 tables, accepted by ACM Computing Surveys

TreeScope: An Agricultural Robotics Dataset for LiDAR-Based Mapping of Trees in Forests and Orchards 2023-10-03
Show

Data collection for forestry, timber, and agriculture currently relies on manual techniques which are labor-intensive and time-consuming. We seek to demonstrate that robotics offers improvements over these techniques and accelerate agricultural research, beginning with semantic segmentation and diameter estimation of trees in forests and orchards. We present TreeScope v1.0, the first robotics dataset for precision agriculture and forestry addressing the counting and mapping of trees in forestry and orchards. TreeScope provides LiDAR data from agricultural environments collected with robotics platforms, such as UAV and mobile robot platforms carried by vehicles and human operators. In the first release of this dataset, we provide ground-truth data with over 1,800 manually annotated semantic labels for tree stems and field-measured tree diameters. We share benchmark scripts for these tasks that researchers may use to evaluate the accuracy of their algorithms. Finally, we run our open-source diameter estimation and off-the-shelf semantic segmentation algorithms and share our baseline results.

Submi...

Submitted to 2024 IEEE International Conference on Robotics and Automation (ICRA 2024) for review

AgriSORT: A Simple Online Real-time Tracking-by-Detection framework for robotics in precision agriculture 2023-09-28
Show

The problem of multi-object tracking (MOT) consists in detecting and tracking all the objects in a video sequence while keeping a unique identifier for each object. It is a challenging and fundamental problem for robotics. In precision agriculture the challenge of achieving a satisfactory solution is amplified by extreme camera motion, sudden illumination changes, and strong occlusions. Most modern trackers rely on the appearance of objects rather than motion for association, which can be ineffective when most targets are static objects with the same appearance, as in the agricultural case. To this end, on the trail of SORT [5], we propose AgriSORT, a simple, online, real-time tracking-by-detection pipeline for precision agriculture based only on motion information that allows for accurate and fast propagation of tracks between frames. The main focuses of AgriSORT are efficiency, flexibility, minimal dependencies, and ease of deployment on robotic platforms. We test the proposed pipeline on a novel MOT benchmark specifically tailored for the agricultural context, based on video sequences taken in a table grape vineyard, particularly challenging due to strong self-similarity and density of the instances. Both the code and the dataset are available for future comparisons.

8 pag...

8 pages, 5 figures, submitted to International Conference on Robotics and Automation (ICRA) 2024. Code and dataset will be soon available on my github. This work has been submitted to the IEEE for possible publication

From Text to Trends: A Unique Garden Analytics Perspective on the Future of Modern Agriculture 2023-09-22
Show

Data-driven insights are essential for modern agriculture. This research paper introduces a machine learning framework designed to improve how we educate and reach out to people in the field of horticulture. The framework relies on data from the Horticulture Online Help Desk (HOHD), which is like a big collection of questions from people who love gardening and are part of the Extension Master Gardener Program (EMGP). This framework has two main parts. First, it uses special computer programs (machine learning models) to sort questions into categories. This helps us quickly send each question to the right expert, so we can answer it faster. Second, it looks at when questions are asked and uses that information to guess how many questions we might get in the future and what they will be about. This helps us plan on topics that will be really important. It's like knowing what questions will be popular in the coming months. We also take into account where the questions come from by looking at the Zip Code. This helps us make research that fits the challenges faced by gardeners in different places. In this paper, we demonstrate the potential of machine learning techniques to predict trends in horticulture by analyzing textual queries from homeowners. We show that NLP, classification, and time series analysis can be used to identify patterns in homeowners' queries and predict future trends in horticulture. Our results suggest that machine learning could be used to predict trends in other agricultural sectors as well. If large-scale agriculture industries curate and maintain a comparable repository of textual data, the potential for trend prediction and strategic agricultural planning could be revolutionized. This convergence of technology and agriculture offers a promising pathway for the future of sustainable farming and data-informed agricultural practices

PAg-NeRF: Towards fast and efficient end-to-end panoptic 3D representations for agricultural robotics 2023-09-11
Show

Precise scene understanding is key for most robot monitoring and intervention tasks in agriculture. In this work we present PAg-NeRF which is a novel NeRF-based system that enables 3D panoptic scene understanding. Our representation is trained using an image sequence with noisy robot odometry poses and automatic panoptic predictions with inconsistent IDs between frames. Despite this noisy input, our system is able to output scene geometry, photo-realistic renders and 3D consistent panoptic representations with consistent instance IDs. We evaluate this novel system in a very challenging horticultural scenario and in doing so demonstrate an end-to-end trainable system that can make use of noisy robot poses rather than precise poses that have to be pre-calculated. Compared to a baseline approach the peak signal to noise ratio is improved from 21.34dB to 23.37dB while the panoptic quality improves from 56.65% to 70.08%. Furthermore, our approach is faster and can be tuned to improve inference time by more than a factor of 2 while being memory efficient with approximately 12 times fewer parameters.

Autonomous Agriculture Robot for Smart Farming 2023-09-07
Show

This project aims to develop and demonstrate a ground robot with intelligence capable of conducting semi-autonomous farm operations for different low-heights vegetable crops referred as Agriculture Application Robot(AAR). AAR is a lightweight, solar-electric powered robot that uses intelligent perception for conducting detection and classification of plants and their characteristics. The system also has a robotic arm for the autonomous weed cutting process. The robot can deliver fertilizer spraying, insecticide, herbicide, and other fluids to the targets such as crops, weeds, and other pests. Besides, it provides information for future research into higher-level tasks such as yield estimation, crop, and soil health monitoring. We present the design of robot and the associated experiments which show the promising results in real world environments.

Due t...

Due to author interest conflicts

Mobile robots sampling algorithms for monitoring of insects populations in agricultural fields 2023-08-26
Show

Plant diseases are major causes of production losses and may have a significant impact on the agricultural sector. Detecting pests as early as possible can help increase crop yields and production efficiency. Several robotic monitoring systems have been developed allowing to collect data and provide a greater understanding of environmental processes. An agricultural robot can enable accurate timely detection of pests, by traversing the field autonomously and monitoring the entire cropped area within a field. However, in many cases it is impossible to sample all plants due to resource limitations. In this thesis, the development and evaluation of several sampling algorithms are presented to address the challenge of an agriculture-monitoring ground robot designed to locate insects in an agricultural field, where complete sampling of all the plants is infeasible. Two situations were investigated in simulation models that were specially developed as part of this thesis: where no a-priori information on the insects is available and where prior information on the insects distributions within the field is known. For the first situation, seven algorithms were tested, each utilizing an approach to sample the field without prior knowledge of it. For the second situation, we present the development and evaluation of a dynamic sampling algorithm which utilizes real-time information to prioritize sampling at suspected points, locate hot spots and adapt sampling plans accordingly. The algorithm's performance was compared to two existing algorithms using Tetranychidae insect data from previous research. Analyses revealed that the dynamic algorithm outperformed the others.

Integrating Renewable Energy in Agriculture: A Deep Reinforcement Learning-based Approach 2023-08-16
Show

This article investigates the use of Deep Q-Networks (DQNs) to optimize decision-making for photovoltaic (PV) systems installations in the agriculture sector. The study develops a DQN framework to assist agricultural investors in making informed decisions considering factors such as installation budget, government incentives, energy requirements, system cost, and long-term benefits. By implementing a reward mechanism, the DQN learns to make data-driven decisions on PV integration. The analysis provides a comprehensive understanding of how DQNs can support investors in making decisions about PV installations in agriculture. This research has significant implications for promoting sustainable and efficient farming practices while also paving the way for future advancements in this field. By leveraging DQNs, agricultural investors can make optimized decisions that improve energy efficiency, reduce environmental impact, and enhance profitability. This study contributes to the advancement of PV integration in agriculture and encourages further innovation in this promising area.

This ...

This paper has been accepted at the 2023 Deep Learning for Precision Agriculture (DLSPA) Workshop, at The 2023 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)

Towards Temporal Edge Regression: A Case Study on Agriculture Trade Between Nations 2023-08-15
Show

Recently, Graph Neural Networks (GNNs) have shown promising performance in tasks on dynamic graphs such as node classification, link prediction and graph regression. However, few work has studied the temporal edge regression task which has important real-world applications. In this paper, we explore the application of GNNs to edge regression tasks in both static and dynamic settings, focusing on predicting food and agriculture trade values between nations. We introduce three simple yet strong baselines and comprehensively evaluate one static and three dynamic GNN models using the UN Trade dataset. Our experimental results reveal that the baselines exhibit remarkably strong performance across various settings, highlighting the inadequacy of existing GNNs. We also find that TGN outperforms other GNN models, suggesting TGN is a more appropriate choice for edge regression tasks. Moreover, we note that the proportion of negative edges in the training samples significantly affects the test performance. The companion source code can be found at: https://github.com/scylj1/GNN_Edge_Regression.

12 pa...

12 pages, 4 figures, 4 tables

A Fog-based Smart Agriculture System to Detect Animal Intrusion 2023-08-12
Show

Smart agriculture is one of the most promising areas where IoT-enabled technologies have the potential to substantially improve the quality and quantity of the crops and reduce the associated operational cost. However, building a smart agriculture system presents several challenges, including high latency and bandwidth consumption associated with cloud computing, frequent Internet disconnections in rural areas, and the need to keep costs low for farmers. This paper presents an end-to-end, fog-based smart agriculture infrastructure that incorporates edge computing and LoRa-based communication to address these challenges. Our system is deployed to transform traditional agriculture land of rural areas into smart agriculture. We address the top concern of farmers - animals intruding - by proposing a solution that detects animal intrusion using low-cost PIR sensors, cameras, and computer vision. In particular, we propose three different sensor layouts and a novel algorithm for predicting animals' future locations. Our system can detect animals before they intrude into the field, identify them, predict their future locations, and alert farmers in a timely manner. Our experiments show that the system can effectively and quickly detect animal intrusions while maintaining a much lower cost than current state-of-the-art systems.

9 pages, 16 figures
An Autonomous Hybrid Drone-Rover Vehicle for Weed Removal and Spraying Applications in Agriculture 2023-08-09
Show

The usage of drones and rovers helps to overcome the limitations of traditional agriculture which has been predominantly human-intensive, for carrying out tasks such as removal of weeds and spraying of fertilizers and pesticides. Drones and rovers are helping to realize precision agriculture and farmers with improved monitoring and surveying at affordable costs. Major benefits have come for vertical farming and fields with irrigation canals. However, drones have a limitation of flight time due to payload constraints. Rovers have limitations in vertical farming and obstacles like canals in agricultural fields. To meet the different requirements of multiple terrains and vertical farming in agriculture, we propose an autonomous hybrid drone-rover vehicle that combines the advantages of both rovers and drones. The prototype is described along with experimental results regarding its ability to avoid obstacles, pluck weeds and spray pesticides.

6 pag...

6 pages, 9 figures, accepted for AGRETA2023

Embedding-based Retrieval with LLM for Effective Agriculture Information Extracting from Unstructured Data 2023-08-06
Show

Pest identification is a crucial aspect of pest control in agriculture. However, most farmers are not capable of accurately identifying pests in the field, and there is a limited number of structured data sources available for rapid querying. In this work, we explored using domain-agnostic general pre-trained large language model(LLM) to extract structured data from agricultural documents with minimal or no human intervention. We propose a methodology that involves text retrieval and filtering using embedding-based retrieval, followed by LLM question-answering to automatically extract entities and attributes from the documents, and transform them into structured data. In comparison to existing methods, our approach achieves consistently better accuracy in the benchmark while maintaining efficiency.

Deep Semantic Model Fusion for Ancient Agricultural Terrace Detection 2023-08-04
Show

Discovering ancient agricultural terraces in desert regions is important for the monitoring of long-term climate changes on the Earth's surface. However, traditional ground surveys are both costly and limited in scale. With the increasing accessibility of aerial and satellite data, machine learning techniques bear large potential for the automatic detection and recognition of archaeological landscapes. In this paper, we propose a deep semantic model fusion method for ancient agricultural terrace detection. The input data includes aerial images and LiDAR generated terrain features in the Negev desert. Two deep semantic segmentation models, namely DeepLabv3+ and UNet, with EfficientNet backbone, are trained and fused to provide segmentation maps of ancient terraces and walls. The proposed method won the first prize in the International AI Archaeology Challenge. Codes are available at https://github.com/wangyi111/international-archaeology-ai-challenge.

IEEE ...

IEEE Big Data 2022 workshop on Digital Twins for Accelerated Discovery of Climate & Sustainability Solutions (ADoCS)

Multispectral Image Segmentation in Agriculture: A Comprehensive Study on Fusion Approaches 2023-07-31
Show

Multispectral imagery is frequently incorporated into agricultural tasks, providing valuable support for applications such as image segmentation, crop monitoring, field robotics, and yield estimation. From an image segmentation perspective, multispectral cameras can provide rich spectral information, helping with noise reduction and feature extraction. As such, this paper concentrates on the use of fusion approaches to enhance the segmentation process in agricultural applications. More specifically, in this work, we compare different fusion approaches by combining RGB and NDVI as inputs for crop row detection, which can be useful in autonomous robots operating in the field. The inputs are used individually as well as combined at different times of the process (early and late fusion) to perform classical and DL-based semantic segmentation. In this study, two agriculture-related datasets are subjected to analysis using both deep learning (DL)-based and classical segmentation methodologies. The experiments reveal that classical segmentation methods, utilizing techniques such as edge detection and thresholding, can effectively compete with DL-based algorithms, particularly in tasks requiring precise foreground-background separation. This suggests that traditional methods retain their efficacy in certain specialized applications within the agricultural domain. Moreover, among the fusion strategies examined, late fusion emerges as the most robust approach, demonstrating superiority in adaptability and effectiveness across varying segmentation scenarios. The dataset and code is available at https://github.com/Cybonic/MISAgriculture.git.

This ...

This preprint has been submitted to ROBOT23: Sixth Iberian Robotics Conference

Chatbot Application to Support Smart Agriculture in Thailand 2023-07-31
Show

A chatbot is a software developed to help reply to text or voice conversations automatically and quickly in real time. In the agriculture sector, the existing smart agriculture systems just use data from sensing and internet of things (IoT) technologies that exclude crop cultivation knowledge to support decision-making by farmers. To enhance this, the chatbot application can be an assistant to farmers to provide crop cultivation knowledge. Consequently, we propose the LINE chatbot application as an information and knowledge representation providing crop cultivation recommendations to farmers. It works with smart agriculture and recommendation systems. Our proposed LINE chatbot application consists of five main functions (start/stop menu, main page, drip irri gation page, mist irrigation page, and monitor page). Farmers will receive information for data monitoring to support their decision-making. Moreover, they can control the irrigation system via the LINE chatbot. Furthermore, farmers can ask questions relevant to the crop environment via a chat box. After implementing our proposed chatbot, farmers are very satisfied with the application, scoring a 96% satisfaction score. However, in terms of asking questions via chat box, this LINE chatbot application is a rule-based bot or script bot. Farmers have to type in the correct keywords as prescribed, otherwise they won't get a response from the chatbots. In the future, we will enhance the asking function of our LINE chatbot to be an intelligent bot.

CATASTROAGRI -- Interactive data analysis and visualization application with a future projection for catastrophic agricultural insurance 2023-07-24
Show

CATASTROAGRI is an application developed to load, analyze and interactively visualize relevant data on catastrophic agricultural insurance. It also focuses on the analysis of an ARIMA (0,1,1) (0,1,1) model to identify and estimate patterns in the agricultural data of the Puno Region, it presents a decreasing trend because there is a significant relationship between successive values of the time series, We can also state that it is not stationary because the mean and variance do not remain constant over time and the series has periods, and it is observed that the cases are decreasing and increasing over the years, especially the amount to indemnify due to the behavior of the climate in the highlands. The results of the analysis show that agricultural insurance plays an important role in protecting farmers against losses caused by adverse climatic events. The importance of concentrating resources and indemnities on the most affected crops and in the provinces with the highest agricultural production is emphasized. The results of the users' evaluation showed a high level of satisfaction, as well as ease of use.

In th...

In the process of sending magazines

Profit allocation in agricultural supply chains: exploring the nexus of cooperation and compensation 2023-07-20
Show

In this paper, we focus on decentralized agricultural supply chains consisting of multiple non-competing distributors satisfying the demand of their respective markets. These distributors source a single product from a farmer through an agricultural cooperative, operating in a single period. The agents have the ability to coordinate their actions to maximize their profits, and we use cooperative game theory to analyze cooperation among them. The distributors can engage in joint ordering, increasing their order size, which leads to a decrease in the price per kilogram. Additionally, distributors have the opportunity to cooperate with the farmer, securing a reduced price per kilogram at the cost price, while compensating the farmer for any kilograms not acquired in the cooperation agreement. We introduce multidistributor-farmer games and we prove that all the agents have incentives to cooperate. We demonstrate the existence of stable allocations, where no subgroup of agents can be better off by separating. Moreover, we propose and characterize a distribution of the total profit that justly compensates the contribution of the farmer in any group of distributors. Finally, we explore the conditions under which the farmer can be compensated in order to maximize their revenues when cooperating with all players.

Agricultural Robotic System: The Automation of Detection and Speech Control 2023-07-19
Show

Agriculture industries often face challenges in manual tasks such as planting, harvesting, fertilizing, and detection, which can be time consuming and prone to errors. The "Agricultural Robotic System" project addresses these issues through a modular design that integrates advanced visual, speech recognition, and robotic technologies. This system is comprised of separate but interconnected modules for vision detection and speech recognition, creating a flexible and adaptable solution. The vision detection module uses computer vision techniques, trained on YOLOv5 and deployed on the Jetson Nano in TensorRT format, to accurately detect and identify different items. A robotic arm module then precisely controls the picking up of seedlings or seeds, and arranges them in specific locations. The speech recognition module enhances intelligent human robot interaction, allowing for efficient and intuitive control of the system. This modular approach improves the efficiency and accuracy of agricultural tasks, demonstrating the potential of robotics in the agricultural industry.

Data sharing and ontology use among agricultural genetics, genomics, and breeding databases and resources of the AgBioData Consortium 2023-07-18
Show

Over the last several decades, there has been rapid growth in the number and scope of agricultural genetics, genomics and breeding (GGB) databases and resources. The AgBioData Consortium (https://www.agbiodata.org/) currently represents 44 databases and resources covering model or crop plant and animal GGB data, ontologies, pathways, genetic variation and breeding platforms (referred to as 'databases' throughout). One of the goals of the Consortium is to facilitate FAIR (Findable, Accessible, Interoperable, and Reusable) data management and the integration of datasets which requires data sharing, along with structured vocabularies and/or ontologies. Two AgBioData working groups, focused on Data Sharing and Ontologies, conducted a survey to assess the status and future needs of the members in those areas. A total of 33 researchers responded to the survey, representing 37 databases. Results suggest that data sharing practices by AgBioData databases are in a healthy state, but it is not clear whether this is true for all metadata and data types across all databases; and that ontology use has not substantially changed since a similar survey was conducted in 2017. We recommend 1) providing training for database personnel in specific data sharing techniques, as well as in ontology use; 2) further study on what metadata is shared, and how well it is shared among databases; 3) promoting an understanding of data sharing and ontologies in the stakeholder community; 4) improving data sharing and ontologies for specific phenotypic data types and formats; and 5) lowering specific barriers to data sharing and ontology use, by identifying sustainability solutions, and the identification, promotion, or development of data standards. Combined, these improvements are likely to help AgBioData databases increase development efforts towards improved ontology use, and data sharing via programmatic means.

17 pages, 8 figures
Employing Drones in Agriculture: An Exploration of Various Drone Types and Key Advantages 2023-07-11
Show

This article explores the use of drones in agriculture and discusses the various types of drones employed for different agricultural applications. Drones, also known as unmanned aerial vehicles (UAVs), offer numerous advantages in farming practices. They provide real-time and high-resolution data collection, enabling farmers to make informed irrigation, fertilization, and pest management decisions. Drones assist in precision spraying and application of agricultural inputs, minimizing chemical wastage and optimizing resource utilization. They offer accessibility to inaccessible areas, reduce manual labor, and provide cost savings and increased operational efficiency. Drones also play a crucial role in mapping and surveying agricultural fields, aiding crop planning and resource allocation. However, challenges such as regulations and limited flight time need to be addressed. The advantages of using drones in agriculture include precision agriculture, cost and time savings, improved data collection and analysis, enhanced crop management, accessibility and flexibility, environmental sustainability, and increased safety for farmers. Overall, drones have the potential to revolutionize farming practices, leading to increased efficiency, productivity, and sustainability in agriculture.

5 pages, 8 figures
Constrained Prioritized 3T2R Task Control for Robotic Agricultural Spraying 2023-07-01
Show

In this paper, we present a solution for robot arm-controlled agricultural spraying, handling the spraying task as a constrained prioritized 3T2R task. 3T2R tasks in robot manipulation consist of three translational and two rotational degrees of freedom, and are frequently used when the end-effector is axis-symmetric. The solution presented in this paper introduces a prioritization between the translational and rotational degrees of freedom of the 3T2R task, and we discuss the utility of this kind of approach for both velocity and positional inverse kinematics, which relate to continuous and selective agricultural spraying applications respectively.

Energy Modelling and Forecasting for an Underground Agricultural Farm using a Higher Order Dynamic Mode Decomposition Approach 2023-06-26
Show

This paper presents an approach based on higher order dynamic mode decomposition (HODMD) to model, analyse, and forecast energy behaviour in an urban agriculture farm situated in a retrofitted London underground tunnel, where observed measurements are influenced by noisy and occasionally transient conditions. HODMD is a data-driven reduced order modelling method typically used to analyse and predict highly noisy and complex flows in fluid dynamics or any type of complex data from dynamical systems. HODMD is a recent extension of the classical dynamic mode decomposition method (DMD), customised to handle scenarios where the spectral complexity underlying the measurement data is higher than its spatial complexity, such as is the environmental behaviour of the farm. HODMD decomposes temporal data as a linear expansion of physically-meaningful DMD-modes in a semi-automatic approach, using a time-delay embedded approach. We apply HODMD to three seasonal scenarios using real data measured by sensors located at at the cross-sectional centre of the the underground farm. Through the study we revealed three physically-interpretable mode pairs that govern the environmental behaviour at the centre of the farm, consistently across environmental scenarios. Subsequently, we demonstrate how we can reconstruct the fundamental structure of the observed time-series using only these modes, and forecast for three days ahead, as one, compact and interpretable reduced-order model. We find HODMD to serve as a robust, semi-automatic modelling alternative for predictive modelling in Digital Twins.

Segmentation and Tracking of Vegetable Plants by Exploiting Vegetable Shape Feature for Precision Spray of Agricultural Robots 2023-06-26
Show

With the increasing deployment of agricultural robots, the traditional manual spray of liquid fertilizer and pesticide is gradually being replaced by agricultural robots. For robotic precision spray application in vegetable farms, accurate plant phenotyping through instance segmentation and robust plant tracking are of great importance and a prerequisite for the following spray action. Regarding the robust tracking of vegetable plants, to solve the challenging problem of associating vegetables with similar color and texture in consecutive images, in this paper, a novel method of Multiple Object Tracking and Segmentation (MOTS) is proposed for instance segmentation and tracking of multiple vegetable plants. In our approach, contour and blob features are extracted to describe unique feature of each individual vegetable, and associate the same vegetables in different images. By assigning a unique ID for each vegetable, it ensures the robot to spray each vegetable exactly once, while traversing along the farm rows. Comprehensive experiments including ablation studies are conducted, which prove its superior performance over two State-Of-The-Art (SOTA) MOTS methods. Compared to the conventional MOTS methods, the proposed method is able to re-identify objects which have gone out of the camera field of view and re-appear again using the proposed data association strategy, which is important to ensure each vegetable be sprayed only once when the robot travels back and forth. Although the method is tested on lettuce farm, it can be applied to other similar vegetables such as broccoli and canola. Both code and the dataset of this paper is publicly released for the benefit of the community: https://github.com/NanH5837/LettuceMOTS.

Exploring New Frontiers in Agricultural NLP: Investigating the Potential of Large Language Models for Food Applications 2023-06-20
Show

This paper explores new frontiers in agricultural natural language processing by investigating the effectiveness of using food-related text corpora for pretraining transformer-based language models. In particular, we focus on the task of semantic matching, which involves establishing mappings between food descriptions and nutrition data. To accomplish this, we fine-tune a pre-trained transformer-based language model, AgriBERT, on this task, utilizing an external source of knowledge, such as the FoodOn ontology. To advance the field of agricultural NLP, we propose two new avenues of exploration: (1) utilizing GPT-based models as a baseline and (2) leveraging ChatGPT as an external source of knowledge. ChatGPT has shown to be a strong baseline in many NLP tasks, and we believe it has the potential to improve our model in the task of semantic matching and enhance our model's understanding of food-related concepts and relationships. Additionally, we experiment with other applications, such as cuisine prediction based on food ingredients, and expand the scope of our research to include other NLP tasks beyond semantic matching. Overall, this paper provides promising avenues for future research in this field, with potential implications for improving the performance of agricultural NLP applications.

INoD: Injected Noise Discriminator for Self-Supervised Representation Learning in Agricultural Fields 2023-06-19
Show

Perception datasets for agriculture are limited both in quantity and diversity which hinders effective training of supervised learning approaches. Self-supervised learning techniques alleviate this problem, however, existing methods are not optimized for dense prediction tasks in agriculture domains which results in degraded performance. In this work, we address this limitation with our proposed Injected Noise Discriminator (INoD) which exploits principles of feature replacement and dataset discrimination for self-supervised representation learning. INoD interleaves feature maps from two disjoint datasets during their convolutional encoding and predicts the dataset affiliation of the resultant feature map as a pretext task. Our approach enables the network to learn unequivocal representations of objects seen in one dataset while observing them in conjunction with similar features from the disjoint dataset. This allows the network to reason about higher-level semantics of the entailed objects, thus improving its performance on various downstream tasks. Additionally, we introduce the novel Fraunhofer Potato 2022 dataset consisting of over 16,800 images for object detection in potato fields. Extensive evaluations of our proposed INoD pretraining strategy for the tasks of object detection, semantic segmentation, and instance segmentation on the Sugar Beets 2016 and our potato dataset demonstrate that it achieves state-of-the-art performance.

11 pages, 10 figures
Web of Things and Trends in Agriculture: A Systematic Literature Review 2023-06-15
Show

In the past few years, the Web of Things (WOT) became a beneficial game-changing technology within the Agriculture domain as it introduces innovative and promising solutions to the Internet of Things (IoT) agricultural applications problems by providing its services. WOT provides the support for integration, interoperability for heterogeneous devices, infrastructures, platforms, and the emergence of various other technologies. The main aim of this study is about understanding and providing a growing and existing research content, issues, and directions for the future regarding WOT-based agriculture. Therefore, a systematic literature review (SLR) of research articles is presented by categorizing the selected studies published between 2010 and 2020 into the following categories: research type, approaches, and their application domains. Apart from reviewing the state-of-the-art articles on WOT solutions for the agriculture field, a taxonomy of WOT-base agriculture application domains has also been presented in this study. A model has also presented to show the picture of WOT based Smart Agriculture. Lastly, the findings of this SLR and the research gaps in terms of open issues have been presented to provide suggestions on possible future directions for the researchers for future research.

36 pages, 20 figures
Hierarchical Approach for Joint Semantic, Plant Instance, and Leaf Instance Segmentation in the Agricultural Domain 2023-06-14
Show

Plant phenotyping is a central task in agriculture, as it describes plants' growth stage, development, and other relevant quantities. Robots can help automate this process by accurately estimating plant traits such as the number of leaves, leaf area, and the plant size. In this paper, we address the problem of joint semantic, plant instance, and leaf instance segmentation of crop fields from RGB data. We propose a single convolutional neural network that addresses the three tasks simultaneously, exploiting their underlying hierarchical structure. We introduce task-specific skip connections, which our experimental evaluation proves to be more beneficial than the usual schemes. We also propose a novel automatic post-processing, which explicitly addresses the problem of spatially close instances, common in the agricultural domain because of overlapping leaves. Our architecture simultaneously tackles these problems jointly in the agricultural context. Previous works either focus on plant or leaf segmentation, or do not optimise for semantic segmentation. Results show that our system has superior performance compared to state-of-the-art approaches, while having a reduced number of parameters and is operating at camera frame rate.

6+1 p...

6+1 pages, published to the IEEE International Conference on Robotics and Automation (ICRA) 2023

Enhancing detection of labor violations in the agricultural sector: A multilevel generalized linear regression model of H-2A violation counts 2023-06-06
Show

Agricultural workers are essential to the supply chain for our daily food and yet, many face harmful work conditions, including garnished wages, and other labor violations. Workers on H-2A visas are particularly vulnerable due to the precarity of their immigration status being tied to their employer. Although worksite inspections are one mechanism to detect such violations, many labor violations affecting agricultural workers go undetected due to limited inspection resources. In this study, we identify multiple state and industry level factors that correlate with H-2A violations identified by the U.S. Department of Labor Wage and Hour Division using a multilevel zero-inflated negative binomial model. We find that three state-level factors (average farm acreage size, the number of agricultural establishments with less than 20 employees, and higher poverty rates) are correlated with H-2A violations. These findings provide guidance for inspection agencies regarding how to prioritize their limited resources to more effectively inspect agricultural workplaces, thereby improving workplace conditions for H-2A workers.

25 pages, 3 figures
The Canadian Cropland Dataset: A New Land Cover Dataset for Multitemporal Deep Learning Classification in Agriculture 2023-06-04
Show

Monitoring land cover using remote sensing is vital for studying environmental changes and ensuring global food security through crop yield forecasting. Specifically, multitemporal remote sensing imagery provides relevant information about the dynamics of a scene, which has proven to lead to better land cover classification results. Nevertheless, few studies have benefited from high spatial and temporal resolution data due to the difficulty of accessing reliable, fine-grained and high-quality annotated samples to support their hypotheses. Therefore, we introduce a temporal patch-based dataset of Canadian croplands, enriched with labels retrieved from the Canadian Annual Crop Inventory. The dataset contains 78,536 manually verified high-resolution (10 m/pixel, 640 x 640 m) geo-referenced images from 10 crop classes collected over four crop production years (2017-2020) and five months (June-October). Each instance contains 12 spectral bands, an RGB image, and additional vegetation index bands. Individually, each category contains at least 4,800 images. Moreover, as a benchmark, we provide models and source code that allow a user to predict the crop class using a single image (ResNet, DenseNet, EfficientNet) or a sequence of images (LRCN, 3D-CNN) from the same location. In perspective, we expect this evolving dataset to propel the creation of robust agro-environmental models that can accelerate the comprehension of complex agricultural regions by providing accurate and continuous monitoring of land cover.

24 pa...

24 pages, 5 figures, dataset descriptor

Lettuce modelling for growth control in precision agriculture 2023-06-01
Show

Improving the efficiency of agriculture is a growing priority due to food security issues, environmental concerns, and economics. Precision agriculture and variable rate application technology could enable increases in yield while maintaining or reducing fertiliser use. However, this requires the development of control algorithms which are suitable for the challenges of agriculture. In this paper, we propose a new mechanistic open model of lettuce growth for use in control of precision agriculture. We demonstrate that our model is cooperative and fits well to experimental data. We use the model to show, via simulations, that a simple proportional distributed control law increases crop uniformity and yield without increasing nitrogen use, even in the presence of sparse actuation and noisy observations.

8 pag...

8 pages, Submitted to ECC23

ChatAgri: Exploring Potentials of ChatGPT on Cross-linguistic Agricultural Text Classification 2023-05-24
Show

In the era of sustainable smart agriculture, a massive amount of agricultural news text is being posted on the Internet, in which massive agricultural knowledge has been accumulated. In this context, it is urgent to explore effective text classification techniques for users to access the required agricultural knowledge with high efficiency. Mainstream deep learning approaches employing fine-tuning strategies on pre-trained language models (PLMs), have demonstrated remarkable performance gains over the past few years. Nonetheless, these methods still face many drawbacks that are complex to solve, including: 1. Limited agricultural training data due to the expensive-cost and labour-intensive annotation; 2. Poor domain transferability, especially of cross-linguistic ability; 3. Complex and expensive large models deployment.Inspired by the extraordinary success brought by the recent ChatGPT (e.g. GPT-3.5, GPT-4), in this work, we systematically investigate and explore the capability and utilization of ChatGPT applying to the agricultural informatization field. ....(shown in article).... Code has been released on Github https://github.com/albert-jin/agricultural_textual_classification_ChatGPT.

24 pa...

24 pages,10+figures,46references.Both the first two authors, Biao Zhao and Weiqiang Jin, made equal contributions to this work. Corresponding author: Guang Yang

Label-Efficient Learning in Agriculture: A Comprehensive Review 2023-05-24
Show

The past decade has witnessed many great successes of machine learning (ML) and deep learning (DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural robotics, and precision livestock management. Despite tremendous progresses, one downside of such ML/DL models is that they generally rely on large-scale labeled datasets for training, and the performance of such models is strongly influenced by the size and quality of available labeled data samples. In addition, collecting, processing, and labeling such large-scale datasets is extremely costly and time-consuming, partially due to the rising cost in human labor. Therefore, developing label-efficient ML/DL methods for agricultural applications has received significant interests among researchers and practitioners. In fact, there are more than 50 papers on developing and applying deep-learning-based label-efficient techniques to address various agricultural problems since 2016, which motivates the authors to provide a timely and comprehensive review of recent label-efficient ML/DL methods in agricultural applications. To this end, we first develop a principled taxonomy to organize these methods according to the degree of supervision, including weak supervision (i.e., active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition, a systematic review of various agricultural applications exploiting these label-efficient algorithms, such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented. Finally, we discuss the current problems and challenges, as well as future research directions. A well-classified paper list can be accessed at https://github.com/DongChen06/Label-efficient-in-Agriculture.

34 pages, 23 figures
CWD30: A Comprehensive and Holistic Dataset for Crop Weed Recognition in Precision Agriculture 2023-05-17
Show

The growing demand for precision agriculture necessitates efficient and accurate crop-weed recognition and classification systems. Current datasets often lack the sample size, diversity, and hierarchical structure needed to develop robust deep learning models for discriminating crops and weeds in agricultural fields. Moreover, the similar external structure and phenomics of crops and weeds complicate recognition tasks. To address these issues, we present the CWD30 dataset, a large-scale, diverse, holistic, and hierarchical dataset tailored for crop-weed recognition tasks in precision agriculture. CWD30 comprises over 219,770 high-resolution images of 20 weed species and 10 crop species, encompassing various growth stages, multiple viewing angles, and environmental conditions. The images were collected from diverse agricultural fields across different geographic locations and seasons, ensuring a representative dataset. The dataset's hierarchical taxonomy enables fine-grained classification and facilitates the development of more accurate, robust, and generalizable deep learning models. We conduct extensive baseline experiments to validate the efficacy of the CWD30 dataset. Our experiments reveal that the dataset poses significant challenges due to intra-class variations, inter-class similarities, and data imbalance. Additionally, we demonstrate that minor training modifications like using CWD30 pretrained backbones can significantly enhance model performance and reduce convergence time, saving training resources on several downstream tasks. These challenges provide valuable insights and opportunities for future research in crop-weed recognition. We believe that the CWD30 dataset will serve as a benchmark for evaluating crop-weed recognition algorithms, promoting advancements in precision agriculture, and fostering collaboration among researchers in the field.

15 pa...

15 pages, 14 figures, journal research article

Deep-Learning-based Counting Methods, Datasets, and Applications in Agriculture -- A Review 2023-05-09
Show

The number of objects is considered an important factor in a variety of tasks in the agricultural domain. Automated counting can improve farmers decisions regarding yield estimation, stress detection, disease prevention, and more. In recent years, deep learning has been increasingly applied to many agriculture-related applications, complementing conventional computer-vision algorithms for counting agricultural objects. This article reviews progress in the past decade and the state of the art for counting methods in agriculture, focusing on deep-learning methods. It presents an overview of counting algorithms, metrics, platforms, and sensors, a list of all publicly available datasets, and an in-depth discussion of various deep-learning methods used for counting. Finally, it discusses open challenges in object counting using deep learning and gives a glimpse into new directions and future perspectives for counting research. The review reveals a major leap forward in object counting in agriculture in the past decade, led by the penetration of deep learning methods into counting platforms.

Deep Learning Techniques for Hyperspectral Image Analysis in Agriculture: A Review 2023-04-26
Show

In the recent years, hyperspectral imaging (HSI) has gained considerably popularity among computer vision researchers for its potential in solving remote sensing problems, especially in agriculture field. However, HSI classification is a complex task due to the high redundancy of spectral bands, limited training samples, and non-linear relationship between spatial position and spectral bands. Fortunately, deep learning techniques have shown promising results in HSI analysis. This literature review explores recent applications of deep learning approaches such as Autoencoders, Convolutional Neural Networks (1D, 2D, and 3D), Recurrent Neural Networks, Deep Belief Networks, and Generative Adversarial Networks in agriculture. The performance of these approaches has been evaluated and discussed on well-known land cover datasets including Indian Pines, Salinas Valley, and Pavia University.

An innovative Deep Learning Based Approach for Accurate Agricultural Crop Price Prediction 2023-04-15
Show

Accurate prediction of agricultural crop prices is a crucial input for decision-making by various stakeholders in agriculture: farmers, consumers, retailers, wholesalers, and the Government. These decisions have significant implications including, most importantly, the economic well-being of the farmers. In this paper, our objective is to accurately predict crop prices using historical price information, climate conditions, soil type, location, and other key determinants of crop prices. This is a technically challenging problem, which has been attempted before. In this paper, we propose an innovative deep learning based approach to achieve increased accuracy in price prediction. The proposed approach uses graph neural networks (GNNs) in conjunction with a standard convolutional neural network (CNN) model to exploit geospatial dependencies in prices. Our approach works well with noisy legacy data and produces a performance that is at least 20% better than the results available in the literature. We are able to predict prices up to 30 days ahead. We choose two vegetables, potato (stable price behavior) and tomato (volatile price behavior) and work with noisy public data available from Indian agricultural markets.

9 pag...

9 pages, 3 figures, 3 tables

Designing Fair, Cost-optimal Auctions based on Deep Learning for Procuring Agricultural Inputs through Farmer Collectives 2023-04-14
Show

Procuring agricultural inputs (agri-inputs for short) such as seeds, fertilizers, and pesticides, at desired quality levels and at affordable cost, forms a critical component of agricultural input operations. This is a particularly challenging problem being faced by small and marginal farmers in any emerging economy. Farmer collectives (FCs), which are cooperative societies of farmers, offer an excellent prospect for enabling cost-effective procurement of inputs with assured quality to the farmers. In this paper, our objective is to design sound, explainable mechanisms by which an FC will be able to procure agri-inputs in bulk and distribute the inputs procured to the individual farmers who are members of the FC. In the methodology proposed here, an FC engages qualified suppliers in a competitive, volume discount procurement auction in which the suppliers specify price discounts based on volumes supplied. The desiderata of properties for such an auction include: minimization of the total cost of procurement; incentive compatibility; individual rationality; fairness; and other business constraints. An auction satisfying all these properties is analytically infeasible and a key contribution of this paper is to develop a deep learning based approach to design such an auction. We use two realistic, stylized case studies from chili seeds procurement and a popular pesticide procurement to demonstrate the efficacy of these auctions.

12 pa...

12 pages, 2 figures, 3 tables

AGI for Agriculture 2023-04-12
Show

Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry.

Agronav: Autonomous Navigation Framework for Agricultural Robots and Vehicles using Semantic Segmentation and Semantic Line Detection 2023-04-10
Show

The successful implementation of vision-based navigation in agricultural fields hinges upon two critical components: 1) the accurate identification of key components within the scene, and 2) the identification of lanes through the detection of boundary lines that separate the crops from the traversable ground. We propose Agronav, an end-to-end vision-based autonomous navigation framework, which outputs the centerline from the input image by sequentially processing it through semantic segmentation and semantic line detection models. We also present Agroscapes, a pixel-level annotated dataset collected across six different crops, captured from varying heights and angles. This ensures that the framework trained on Agroscapes is generalizable across both ground and aerial robotic platforms. Codes, models and dataset will be released at \href{https://github.com/shivamkumarpanda/agronav}{github.com/shivamkumarpanda/agronav}.

On Domain-Specific Pre-Training for Effective Semantic Perception in Agricultural Robotics 2023-03-22
Show

Agricultural robots have the prospect to enable more efficient and sustainable agricultural production of food, feed, and fiber. Perception of crops and weeds is a central component of agricultural robots that aim to monitor fields and assess the plants as well as their growth stage in an automatic manner. Semantic perception mostly relies on deep learning using supervised approaches, which require time and qualified workers to label fairly large amounts of data. In this paper, we look into the problem of reducing the amount of labels without compromising the final segmentation performance. For robots operating in the field, pre-training networks in a supervised way is already a popular method to reduce the number of required labeled images. We investigate the possibility of pre-training in a self-supervised fashion using data from the target domain. To better exploit this data, we propose a set of domain-specific augmentation strategies. We evaluate our pre-training on semantic segmentation and leaf instance segmentation, two important tasks in our domain. The experimental results suggest that pre-training with domain-specific data paired with our data augmentation strategy leads to superior performance compared to commonly used pre-trainings. Furthermore, the pre-trained networks obtain similar performance to the fully supervised with less labeled data.

Panoptic One-Click Segmentation: Applied to Agricultural Data 2023-03-15
Show

In weed control, precision agriculture can help to greatly reduce the use of herbicides, resulting in both economical and ecological benefits. A key element is the ability to locate and segment all the plants from image data. Modern instance segmentation techniques can achieve this, however, training such systems requires large amounts of hand-labelled data which is expensive and laborious to obtain. Weakly supervised training can help to greatly reduce labelling efforts and costs. We propose panoptic one-click segmentation, an efficient and accurate offline tool to produce pseudo-labels from click inputs which reduces labelling effort. Our approach jointly estimates the pixel-wise location of all N objects in the scene, compared to traditional approaches which iterate independently through all N objects; this greatly reduces training time. Using just 10% of the data to train our panoptic one-click segmentation approach yields 68.1% and 68.8% mean object intersection over union (IoU) on challenging sugar beet and corn image data respectively, providing comparable performance to traditional one-click approaches while being approximately 12 times faster to train. We demonstrate the applicability of our system by generating pseudo-labels from clicks on the remaining 90% of the data. These pseudo-labels are then used to train Mask R-CNN, in a semi-supervised manner, improving the absolute performance (of mean foreground IoU) by 9.4 and 7.9 points for sugar beet and corn data respectively. Finally, we show that our technique can recover missed clicks during annotation outlining a further benefit over traditional approaches.

in IE...

in IEEE Robotics and Automation Letters (2023)

Extended Agriculture-Vision: An Extension of a Large Aerial Image Dataset for Agricultural Pattern Analysis 2023-03-04
Show

A key challenge for much of the machine learning work on remote sensing and earth observation data is the difficulty in acquiring large amounts of accurately labeled data. This is particularly true for semantic segmentation tasks, which are much less common in the remote sensing domain because of the incredible difficulty in collecting precise, accurate, pixel-level annotations at scale. Recent efforts have addressed these challenges both through the creation of supervised datasets as well as the application of self-supervised methods. We continue these efforts on both fronts. First, we generate and release an improved version of the Agriculture-Vision dataset (Chiu et al., 2020b) to include raw, full-field imagery for greater experimental flexibility. Second, we extend this dataset with the release of 3600 large, high-resolution (10cm/pixel), full-field, red-green-blue and near-infrared images for pre-training. Third, we incorporate the Pixel-to-Propagation Module Xie et al. (2021b) originally built on the SimCLR framework into the framework of MoCo-V2 Chen et al.(2020b). Finally, we demonstrate the usefulness of this data by benchmarking different contrastive learning approaches on both downstream classification and semantic segmentation tasks. We explore both CNN and Swin Transformer Liu et al. (2021a) architectures within different frameworks based on MoCo-V2. Together, these approaches enable us to better detect key agricultural patterns of interest across a field from aerial imagery so that farmers may be alerted to problematic areas in a timely fashion to inform their management decisions. Furthermore, the release of these datasets will support numerous avenues of research for computer vision in remote sensing for agriculture.

Datas...

Dataset: https://github.com/jingwu6/Extended-Agriculture-Vision-Dataset Video: https://youtu.be/2xaKxUpY4iQ

Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles 2023-02-17
Show

This paper describes Fields2Cover, a novel open source library for coverage path planning (CPP) for agricultural vehicles. While there are several CPP solutions nowadays, there have been limited efforts to unify them into an open source library and provide benchmarking tools to compare their performance. Fields2Cover provides a framework for planning coverage paths, developing novel techniques, and benchmarking state-of-the-art algorithms. The library features a modular and extensible architecture that supports various vehicles and can be used for a variety of applications, including farms. Its core modules are: a headland generator, a swath generator, a route planner and a path planner. An interface to the Robot Operating System (ROS) is also supplied as an add-on. In this paper, the functionalities of the library for planning a coverage path in agriculture are demonstrated using 8 state-of-the-art methods and 7 objective functions in simulation and field experiments.

8 pag...

8 pages, 5 figures, 2 tables

Using I4.0 digital twins in agriculture 2023-01-23
Show

Agriculture is a huge domain where an enormous landscape of systems interact to support agricultural processes, which are becoming increasingly digital. From the perspective of agricultural service providers, a prominent challenge is interoperability. In the Fraunhofer lighthouse project Cognitive Agriculture (COGNAC), we investigated how the usage of Industry 4.0 digital twins (I4.0 DTs) can help overcome this challenge. This paper contributes architecture drivers and a solution concept using I4.0 DTs in the agricultural domain. Furthermore, we discuss the opportunities and limitations offered by I4.0 DTs for the agricultural domain.

SugarChain: Blockchain technology meets Agriculture -- The case study and analysis of the Indian sugarcane farming 2023-01-20
Show

Not only in our country and Asia, but the agriculture sector is also lagging all over the world while using new technologies and innovations. Farmers are not getting the accurate price and compensation of their products because of several reasons. The intermediate persons or say middlemen are controlling the prices and product delivery on their own. Due to lack of education, technological advancement, market knowledge, post-harvesting processes, and middleman involvement, farmers are always deprived of their actual pay and efforts. The use of blockchain technology can help such farmers to automate the process with high trust. We have presented our case study and analysis for the Indian sugarcane farming with data collected from farmers. The system implementation, testing, and result analysis has been shown based on the case study. The overall purpose of our research is to emphasize and motivate the agricultural products and benefit the farmers with the use of blockchain technology.

17 pages
Multi-source Pseudo-label Learning of Semantic Segmentation for the Scene Recognition of Agricultural Mobile Robots 2023-01-13
Show

This paper describes a novel method of training a semantic segmentation model for scene recognition of agricultural mobile robots exploiting publicly available datasets of outdoor scenes that are different from the target greenhouse environments. Semantic segmentation models require abundant labels given by tedious manual annotation. A method to work around it is unsupervised domain adaptation (UDA) that transfers knowledge from labeled source datasets to unlabeled target datasets. However, the effectiveness of existing methods is not well studied in adaptation between heterogeneous environments, such as urban scenes and greenhouses. In this paper, we propose a method to train a semantic segmentation model for greenhouse images without manually labeled datasets of greenhouse images. The core of our idea is to use multiple rich image datasets of different environments with segmentation labels to generate pseudo-labels for the target images to effectively transfer the knowledge from multiple sources and realize a precise training of semantic segmentation. Along with the pseudo-label generation, we introduce state-of-the-art methods to deal with noise in the pseudo-labels to further improve the performance. We demonstrate in experiments with multiple greenhouse datasets that our proposed method improves the performance compared to the single-source baselines and an existing approach.

Publi...

Published in Advanced Robotics

The Role of Digital Agriculture in Transforming Rural Areas into Smart Villages 2023-01-07
Show

From the perspective of any nation, rural areas generally present a comparable set of problems, such as a lack of proper health care, education, living conditions, wages, and market opportunities. Some nations have created and developed the concept of smart villages during the previous few decades, which effectively addresses these issues. The landscape of traditional agriculture has been radically altered by digital agriculture, which has also had a positive economic impact on farmers and those who live in rural regions by ensuring an increase in agricultural production. We explored current issues in rural areas, and the consequences of smart village applications, and then illustrate our concept of smart village from recent examples of how emerging digital agriculture trends contribute to improving agricultural production in this chapter.

Classification and mapping of low-statured 'shrubland' cover types in post-agricultural landscapes of the US Northeast 2022-12-21
Show

Novel plant communities reshape landscapes and pose challenges for land cover classification and mapping that can constrain research and stewardship efforts. In the US Northeast, emergence of low-statured woody vegetation, or shrublands, instead of secondary forests in post-agricultural landscapes is well-documented by field studies, but poorly understood from a landscape perspective, which limits the ability to systematically study and manage these lands. To address gaps in classification/mapping of low-statured cover types where they have been historically rare, we developed models to predict shrubland distributions at 30m resolution across New York State (NYS), using a stacked ensemble combining a random forest, gradient boosting machine, and artificial neural network to integrate remote sensing of structural (airborne LIDAR) and optical (satellite imagery) properties of vegetation cover. We first classified a 1m canopy height model (CHM), derived from a patchwork of available LIDAR coverages, to define shrubland presence/absence. Next, these non-contiguous maps were used to train a model ensemble based on temporally-segmented imagery to predict shrubland probability for the entire study landscape (NYS). Approximately 2.5% of the CHM coverage area was classified as shrubland. Models using Landsat predictors trained on the classified CHM were effective at identifying shrubland (test set AUC=0.893, real-world AUC=0.904), in discriminating between shrub/young forest and other cover classes, and produced qualitatively sensible maps, even when extending beyond the original training data. Our results suggest that incorporation of airborne LiDAR, even from a discontinuous patchwork of coverages, can improve land cover classification of historically rare but increasingly prevalent shrubland habitats across broader areas.

43 pa...

43 pages (35 main text, 8 supplementary materials); 11 figures (10 main text, 1 supplementary materials), 10 tables (4 main text, 6 supplementary materials)

5G on the Farm: Evaluating Wireless Network Capabilities for Agricultural Robotics 2022-12-09
Show

Global food security is an issue that is fast becoming a critical matter in the world today. Global warming, climate change and a range of other impacts caused by humans, such as carbon emissions, sociopolitical and economical challenges (e.g. war), traditional workforce/labour decline and population growth are straining global food security. The need for high-speed and reliable wireless communication in agriculture is becoming more of a necessity rather than a technological demonstration or showing superiority in the field. Governments and industries around the world are seeing more urgency in establishing communication infrastructure to scale up agricultural activities and improve sustainability, by employing autonomous agri-robotics and agri-technologies. The work presented here evaluates the physical performance of 5G in an agri-robotics application, and the results are compared against 4G and WiFi6 (a newly emerging wireless communication standard), which are typically used in agricultural environments. In addition, a series of simulation experiments were performed to assess the ``real-time'' operational delay in critical tasks that may require a human-in-the-loop to support decision making. The results lead to the conclusion that 4G cannot be used in the agricultural domain for applications that require high throughput and reliable communication between robot and user. Moreover, a single wireless solution does not exist for the agricultural domain, but instead multiple solutions can be combined to meet the necessary telecommunications requirements. Finally, the results show that 5G greatly outperforms 4G in all performance metrics, and on average only 18.2ms slower than WiFi6 making it very reliable.

19 pa...

19 pages, 17 figures, 10 tables

Time series numerical association rule mining variants in smart agriculture 2022-12-07
Show

Numerical association rule mining offers a very efficient way of mining association rules, where algorithms can operate directly with categorical and numerical attributes. These methods are suitable for mining different transaction databases, where data are entered sequentially. However, little attention has been paid to the time series numerical association rule mining, which offers a new technique for extracting association rules from time series data. This paper presents a new algorithmic method for time series numerical association rule mining and its application in smart agriculture. We offer a concept of a hardware environment for monitoring plant parameters and a novel data mining method with practical experiments. The practical experiments showed the method's potential and opened the door for further extension.

Barriers to implementation of blockchain technology in agricultural supply chain 2022-12-06
Show

Emerging technologies, such as Blockchain and the Internet of Things (IoT), have had an immense role in propelling the agricultural industry towards the fourth agricultural revolution. Blockchain and IoT can greatly improve the traceability, efficiency, and safety of food along the supply chain. Given these contributions, there are many barriers to widespread adoption of this technology, including a deficit in many workers' ability to understand and effectively use this technology in addition to a lack of infrastructure to educate and support these workers. This paper discusses the barriers to adoption of blockchain and IoT technology in the agricultural supply chain. The authors analyse the impact of Blockchain and IoT in the food supply chain and methods in which governments and corporations can become more adaptable. Through the reduction in imports and protection of demand for local farmers, developing economies can create local sustainable agricultural ecosystems. Furthermore, the use of both public and private Research and Development can greatly contribute to the global knowledge on new technologies and improve many aspects of the food supply chain. In conclusion, both governments and corporations have a big role to play in the increased implementation of progressive technologies and the overall improvement of the food supply chain along with it.

8 pages
Evaluating Digital Agriculture Recommendations with Causal Inference 2022-11-30
Show

In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of smart farming tools. While AI-driven digital agriculture tools can offer high-performing predictive functionalities, they lack tangible quantitative evidence on their benefits to the farmers. Field experiments can derive such evidence, but are often costly, time consuming and hence limited in scope and scale of application. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators (e.g., yield in this case). This way, we can increase farmers' trust via enhancing the transparency of the digital agriculture market and accelerate the adoption of technologies that aim to secure farmer income resilience and global agricultural sustainability. As a case study, we designed and implemented a recommendation system for the optimal sowing time of cotton based on numerical weather predictions, which was used by a farmers' cooperative during the growing season of 2021. We then leverage agricultural knowledge, collected yield data, and environmental information to develop a causal graph of the farm system. Using the back-door criterion, we identify the impact of sowing recommendations on the yield and subsequently estimate it using linear regression, matching, inverse propensity score weighting and meta-learners. The results reveal that a field sown according to our recommendations exhibited a statistically significant yield increase that ranged from 12% to 17%, depending on the method. The effect estimates were robust, as indicated by the agreement among the estimation methods and four successful refutation tests. We argue that this approach can be implemented for decision support systems of other fields, extending their evaluation beyond a performance assessment of internal functionalities.

Accep...

Accepted at AAAI'23, AI for Social Impact Track. arXiv admin note: substantial text overlap with arXiv:2211.03195

Interpretability and accessibility of machine learning in selected food processing, agriculture and health applications 2022-11-30
Show

Artificial Intelligence (AI) and its data-centric branch of machine learning (ML) have greatly evolved over the last few decades. However, as AI is used increasingly in real world use cases, the importance of the interpretability of and accessibility to AI systems have become major research areas. The lack of interpretability of ML based systems is a major hindrance to widespread adoption of these powerful algorithms. This is due to many reasons including ethical and regulatory concerns, which have resulted in poorer adoption of ML in some areas. The recent past has seen a surge in research on interpretable ML. Generally, designing a ML system requires good domain understanding combined with expert knowledge. New techniques are emerging to improve ML accessibility through automated model design. This paper provides a review of the work done to improve interpretability and accessibility of machine learning in the context of global problems while also being relevant to developing countries. We review work under multiple levels of interpretability including scientific and mathematical interpretation, statistical interpretation and partial semantic interpretation. This review includes applications in three areas, namely food processing, agriculture and health.

publi...

published in the "Journal of the National Science Foundation of Sri Lanka, Volume 50"

Big Earth Data and Machine Learning for Sustainable and Resilient Agriculture 2022-11-22
Show

Big streams of Earth images from satellites or other platforms (e.g., drones and mobile phones) are becoming increasingly available at low or no cost and with enhanced spatial and temporal resolution. This thesis recognizes the unprecedented opportunities offered by the high quality and open access Earth observation data of our times and introduces novel machine learning and big data methods to properly exploit them towards developing applications for sustainable and resilient agriculture. The thesis addresses three distinct thematic areas, i.e., the monitoring of the Common Agricultural Policy (CAP), the monitoring of food security and applications for smart and resilient agriculture. The methodological innovations of the developments related to the three thematic areas address the following issues: i) the processing of big Earth Observation (EO) data, ii) the scarcity of annotated data for machine learning model training and iii) the gap between machine learning outputs and actionable advice. This thesis demonstrated how big data technologies such as data cubes, distributed learning, linked open data and semantic enrichment can be used to exploit the data deluge and extract knowledge to address real user needs. Furthermore, this thesis argues for the importance of semi-supervised and unsupervised machine learning models that circumvent the ever-present challenge of scarce annotations and thus allow for model generalization in space and time. Specifically, it is shown how merely few ground truth data are needed to generate high quality crop type maps and crop phenology estimations. Finally, this thesis argues there is considerable distance in value between model inferences and decision making in real-world scenarios and thereby showcases the power of causal and interpretable machine learning in bridging this gap.

Phd thesis
Design of an Autonomous Agriculture Robot for Real Time Weed Detection using CNN 2022-11-22
Show

Agriculture has always remained an integral part of the world. As the human population keeps on rising, the demand for food also increases, and so is the dependency on the agriculture industry. But in today's scenario, because of low yield, less rainfall, etc., a dearth of manpower is created in this agricultural sector, and people are moving to live in the cities, and villages are becoming more and more urbanized. On the other hand, the field of robotics has seen tremendous development in the past few years. The concepts like Deep Learning (DL), Artificial Intelligence (AI), and Machine Learning (ML) are being incorporated with robotics to create autonomous systems for various sectors like automotive, agriculture, assembly line management, etc. Deploying such autonomous systems in the agricultural sector help in many aspects like reducing manpower, better yield, and nutritional quality of crops. So, in this paper, the system design of an autonomous agricultural robot which primarily focuses on weed detection is described. A modified deep-learning model for the purpose of weed detection is also proposed. The primary objective of this robot is the detection of weed on a real-time basis without any human involvement, but it can also be extended to design robots in various other applications involved in farming like weed removal, plowing, harvesting, etc., in turn making the farming industry more efficient. Source code and other details can be found at https://github.com/Dhruv2012/Autonomous-Farm-Robot

Publi...

Published at the AVES 2021 conference. Source code and other details can be found at https://github.com/Dhruv2012/Autonomous-Farm-Robot

Evaluating Digital Tools for Sustainable Agriculture using Causal Inference 2022-11-06
Show

In contrast to the rapid digitalization of several industries, agriculture suffers from low adoption of climate-smart farming tools. Even though AI-driven digital agriculture can offer high-performing predictive functionalities, it lacks tangible quantitative evidence on its benefits to the farmers. Field experiments can derive such evidence, but are often costly and time consuming. To this end, we propose an observational causal inference framework for the empirical evaluation of the impact of digital tools on target farm performance indicators. This way, we can increase farmers' trust by enhancing the transparency of the digital agriculture market, and in turn accelerate the adoption of technologies that aim to increase productivity and secure a sustainable and resilient agriculture against a changing climate. As a case study, we perform an empirical evaluation of a recommendation system for optimal cotton sowing, which was used by a farmers' cooperative during the growing season of 2021. We leverage agricultural knowledge to develop a causal graph of the farm system, we use the back-door criterion to identify the impact of recommendations on the yield and subsequently estimate it using several methods on observational data. The results show that a field sown according to our recommendations enjoyed a significant increase in yield (12% to 17%).

Accep...

Accepted for publication and spotlight presentation at Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022

Personalizing Sustainable Agriculture with Causal Machine Learning 2022-11-06
Show

To fight climate change and accommodate the increasing population, global crop production has to be strengthened. To achieve the "sustainable intensification" of agriculture, transforming it from carbon emitter to carbon sink is a priority, and understanding the environmental impact of agricultural management practices is a fundamental prerequisite to that. At the same time, the global agricultural landscape is deeply heterogeneous, with differences in climate, soil, and land use inducing variations in how agricultural systems respond to farmer actions. The "personalization" of sustainable agriculture with the provision of locally adapted management advice is thus a necessary condition for the efficient uplift of green metrics, and an integral development in imminent policies. Here, we formulate personalized sustainable agriculture as a Conditional Average Treatment Effect estimation task and use Causal Machine Learning for tackling it. Leveraging climate data, land use information and employing Double Machine Learning, we estimate the heterogeneous effect of sustainable practices on the field-level Soil Organic Carbon content in Lithuania. We thus provide a data-driven perspective for targeting sustainable practices and effectively expanding the global carbon sink.

Accep...

Accepted for publication and spotlight presentation at Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022

Inside Out: Transforming Images of Lab-Grown Plants for Machine Learning Applications in Agriculture 2022-11-05
Show

Machine learning tasks often require a significant amount of training data for the resultant network to perform suitably for a given problem in any domain. In agriculture, dataset sizes are further limited by phenotypical differences between two plants of the same genotype, often as a result of differing growing conditions. Synthetically-augmented datasets have shown promise in improving existing models when real data is not available. In this paper, we employ a contrastive unpaired translation (CUT) generative adversarial network (GAN) and simple image processing techniques to translate indoor plant images to appear as field images. While we train our network to translate an image containing only a single plant, we show that our method is easily extendable to produce multiple-plant field images. Furthermore, we use our synthetic multi-plant images to train several YoloV5 nano object detection models to perform the task of plant detection and measure the accuracy of the model on real field data images. Including training data generated by the CUT-GAN leads to better plant detection performance compared to a network trained solely on real data.

35 pages, 23 figures
The Power of Transfer Learning in Agricultural Applications: AgriNet 2022-10-06
Show

Advances in deep learning and transfer learning have paved the way for various automation classification tasks in agriculture, including plant diseases, pests, weeds, and plant species detection. However, agriculture automation still faces various challenges, such as the limited size of datasets and the absence of plant-domain-specific pretrained models. Domain specific pretrained models have shown state of art performance in various computer vision tasks including face recognition and medical imaging diagnosis. In this paper, we propose AgriNet dataset, a collection of 160k agricultural images from more than 19 geographical locations, several images captioning devices, and more than 423 classes of plant species and diseases. We also introduce AgriNet models, a set of pretrained models on five ImageNet architectures: VGG16, VGG19, Inception-v3, InceptionResNet-v2, and Xception. AgriNet-VGG19 achieved the highest classification accuracy of 94 % and the highest F1-score of 92%. Additionally, all proposed models were found to accurately classify the 423 classes of plant species, diseases, pests, and weeds with a minimum accuracy of 87% for the Inception-v3 model.Finally, experiments to evaluate of superiority of AgriNet models compared to ImageNet models were conducted on two external datasets: pest and plant diseases dataset from Bangladesh and a plant diseases dataset from Kashmir.

Accep...

Accepted by Frontiers in Plant Science

OAK4XAI: Model towards Out-Of-Box eXplainable Artificial Intelligence for Digital Agriculture 2022-09-29
Show

Recent machine learning approaches have been effective in Artificial Intelligence (AI) applications. They produce robust results with a high level of accuracy. However, most of these techniques do not provide human-understandable explanations for supporting their results and decisions. They usually act as black boxes, and it is not easy to understand how decisions have been made. Explainable Artificial Intelligence (XAI), which has received much interest recently, tries to provide human-understandable explanations for decision-making and trained AI models. For instance, in digital agriculture, related domains often present peculiar or input features with no link to background knowledge. The application of the data mining process on agricultural data leads to results (knowledge), which are difficult to explain. In this paper, we propose a knowledge map model and an ontology design as an XAI framework (OAK4XAI) to deal with this issue. The framework does not only consider the data analysis part of the process, but it takes into account the semantics aspect of the domain knowledge via an ontology and a knowledge map model, provided as modules of the framework. Many ongoing XAI studies aim to provide accurate and verbalizable accounts for how given feature values contribute to model decisions. The proposed approach, however, focuses on providing consistent information and definitions of concepts, algorithms, and values involved in the data mining models. We built an Agriculture Computing Ontology (AgriComO) to explain the knowledge mined in agriculture. AgriComO has a well-designed structure and includes a wide range of concepts and transformations suitable for agriculture and computing domains.

AI-20...

AI-2022 Forty-second SGAI International Conference on Artificial Intelligence

A Novel Dataset for Evaluating and Alleviating Domain Shift for Human Detection in Agricultural Fields 2022-09-27
Show

In this paper we evaluate the impact of domain shift on human detection models trained on well known object detection datasets when deployed on data outside the distribution of the training set, as well as propose methods to alleviate such phenomena based on the available annotations from the target domain. Specifically, we introduce the OpenDR Humans in Field dataset, collected in the context of agricultural robotics applications, using the Robotti platform, allowing for quantitatively measuring the impact of domain shift in such applications. Furthermore, we examine the importance of manual annotation by evaluating three distinct scenarios concerning the training data: a) only negative samples, i.e., no depicted humans, b) only positive samples, i.e., only images which contain humans, and c) both negative and positive samples. Our results indicate that good performance can be achieved even when using only negative samples, if additional consideration is given to the training process. We also find that positive samples increase performance especially in terms of better localization. The dataset is publicly available for download at https://github.com/opendr-eu/datasets.

IoT-Aerial Base Station Task Offloading with Risk-Sensitive Reinforcement Learning for Smart Agriculture 2022-09-15
Show

Aerial base stations (ABSs) allow smart farms to offload processing responsibility of complex tasks from internet of things (IoT) devices to ABSs. IoT devices have limited energy and computing resources, thus it is required to provide an advanced solution for a system that requires the support of ABSs. This paper introduces a novel multi-actor-based risk-sensitive reinforcement learning approach for ABS task scheduling for smart agriculture. The problem is defined as task offloading with a strict condition on completing the IoT tasks before their deadlines. Moreover, the algorithm must also consider the limited energy capacity of the ABSs. The results show that our proposed approach outperforms several heuristics and the classic Q-Learning approach. Furthermore, we provide a mixed integer linear programming solution to determine a lower bound on the performance, and clarify the gap between our risk-sensitive solution and the optimal solution, as well. The comparison proves our extensive simulation results demonstrate that our method is a promising approach for providing a guaranteed task processing services for the IoT tasks in a smart farm, while increasing the hovering time of the ABSs in this farm.

Accepted Paper
Examining Audio Communication Mechanisms for Supervising Fleets of Agricultural Robots 2022-08-22
Show

Agriculture is facing a labor crisis, leading to increased interest in fleets of small, under-canopy robots (agbots) that can perform precise, targeted actions (e.g., crop scouting, weeding, fertilization), while being supervised by human operators remotely. However, farmers are not necessarily experts in robotics technology and will not adopt technologies that add to their workload or do not provide an immediate payoff. In this work, we explore methods for communication between a remote human operator and multiple agbots and examine the impact of audio communication on the operator's preferences and productivity. We develop a simulation platform where agbots are deployed across a field, randomly encounter failures, and call for help from the operator. As the agbots report errors, various audio communication mechanisms are tested to convey which robot failed and what type of failure occurs. The human is tasked with verbally diagnosing the failure while completing a secondary task. A user study was conducted to test three audio communication methods: earcons, single-phrase commands, and full sentence communication. Each participant completed a survey to determine their preferences and each method's overall effectiveness. Our results suggest that the system using single phrases is the most positively perceived by participants and may allow for the human to complete the secondary task more efficiently. The code is available at: https://github.com/akamboj2/Agbot-Sim.

Camer...

Camera ready version for IEEE RO-MAN 2022

Standardizing and Centralizing Datasets to Enable Efficient Training of Agricultural Deep Learning Models 2022-08-04
Show

In recent years, deep learning models have become the standard for agricultural computer vision. Such models are typically fine-tuned to agricultural tasks using model weights that were originally fit to more general, non-agricultural datasets. This lack of agriculture-specific fine-tuning potentially increases training time and resource use, and decreases model performance, leading an overall decrease in data efficiency. To overcome this limitation, we collect a wide range of existing public datasets for three distinct tasks, standardize them, and construct standard training and evaluation pipelines, providing us with a set of benchmarks and pretrained models. We then conduct a number of experiments using methods which are commonly used in deep learning tasks, but unexplored in their domain-specific applications for agriculture. Our experiments guide us in developing a number of approaches to improve data efficiency when training agricultural deep learning models, without large-scale modifications to existing pipelines. Our results demonstrate that even slight training modifications, such as using agricultural pretrained model weights, or adopting specific spatial augmentations into data processing pipelines, can significantly boost model performance and result in shorter convergence time, saving training resources. Furthermore, we find that even models trained on low-quality annotations can produce comparable levels of performance to their high-quality equivalents, suggesting that datasets with poor annotations can still be used for training, expanding the pool of currently available datasets. Our methods are broadly applicable throughout agricultural deep learning, and present high potential for significant data efficiency improvements.

Improved lightweight identification of agricultural diseases based on MobileNetV3 2022-07-19
Show

At present, the identification of agricultural pests and diseases has the problem that the model is not lightweight enough and difficult to apply. Based on MobileNetV3, this paper introduces the Coordinate Attention block. The parameters of MobileNetV3-large are reduced by 22%, the model size is reduced by 19.7%, and the accuracy is improved by 0.92%. The parameters of MobileNetV3-small are reduced by 23.4%, the model size is reduced by 18.3%, and the accuracy is increased by 0.40%. In addition, the improved MobileNetV3-small was migrated to Jetson Nano for testing. The accuracy increased by 2.48% to 98.31%, and the inference speed increased by 7.5%. It provides a reference for deploying the agricultural pest identification model to embedded devices.

Accep...

Accepted by CAIBDA 2022

Knowledge Representation in Digital Agriculture: A Step Towards Standardised Model 2022-07-15
Show

In recent years, data science has evolved significantly. Data analysis and mining processes become routines in all sectors of the economy where datasets are available. Vast data repositories have been collected, curated, stored, and used for extracting knowledge. And this is becoming commonplace. Subsequently, we extract a large amount of knowledge, either directly from the data or through experts in the given domain. The challenge now is how to exploit all this large amount of knowledge that is previously known for efficient decision-making processes. Until recently, much of the knowledge gained through a number of years of research is stored in static knowledge bases or ontologies, while more diverse and dynamic knowledge acquired from data mining studies is not centrally and consistently managed. In this research, we propose a novel model called ontology-based knowledge map to represent and store the results (knowledge) of data mining in crop farming to build, maintain, and enrich the process of knowledge discovery. The proposed model consists of six main sets: concepts, attributes, relations, transformations, instances, and states. This model is dynamic and facilitates the access, updates, and exploitation of the knowledge at any time. This paper also proposes an architecture for handling this knowledge-based model. The system architecture includes knowledge modelling, extraction, assessment, publishing, and exploitation. This system has been implemented and used in agriculture for crop management and monitoring. It is proven to be very effective and promising for its extension to other domains.

Explicitly incorporating spatial information to recurrent networks for agriculture 2022-06-27
Show

In agriculture, the majority of vision systems perform still image classification. Yet, recent work has highlighted the potential of spatial and temporal cues as a rich source of information to improve the classification performance. In this paper, we propose novel approaches to explicitly capture both spatial and temporal information to improve the classification of deep convolutional neural networks. We leverage available RGB-D images and robot odometry to perform inter-frame feature map spatial registration. This information is then fused within recurrent deep learnt models, to improve their accuracy and robustness. We demonstrate that this can considerably improve the classification performance with our best performing spatial-temporal model (ST-Atte) achieving absolute performance improvements for intersection-over-union (IoU[%]) of 4.7 for crop-weed segmentation and 2.6 for fruit (sweet pepper) segmentation. Furthermore, we show that these approaches are robust to variable framerates and odometry errors, which are frequently observed in real-world applications.

Agriculture-Vision Challenge 2022 -- The Runner-Up Solution for Agricultural Pattern Recognition via Transformer-based Models 2022-06-23
Show

The Agriculture-Vision Challenge in CVPR is one of the most famous and competitive challenges for global researchers to break the boundary between computer vision and agriculture sectors, aiming at agricultural pattern recognition from aerial images. In this paper, we propose our solution to the third Agriculture-Vision Challenge in CVPR 2022. We leverage a data pre-processing scheme and several Transformer-based models as well as data augmentation techniques to achieve a mIoU of 0.582, accomplishing the 2nd place in this challenge.

CVPR ...

CVPR 2022, Agriculture-Vision Challenge, Remote Sensing

Business Process Model for Interoperability Improvement in the Agricultural Domain Using Digital Twins 2022-06-17
Show

A farm generates a lot of data from various systems, which is then stored in a distributed manner, usually in non-standardized formats, which bears the risk of data inconsistencies. This work addresses this issue by using business process management (BPM) to demonstrate that the use of digital twins (DTs) can improve interoperability between services in the agriculture domain. Steps from the BPM lifecycle were applied to a farming use case in Germany. First, the as-is business process model was discovered and modeled without DTs, analyzed and then redesigned into the to-be model according to the DT integration. The to-be model showed a reduction in the number of tasks needed to be performed by the farmer as well as an improvement of process data quality, interoperability, and efficiency. Finally, a comparison of the' average processing times of both models with the help of process simulation revealed improvements in the to-be process.

Internet of Things (IoT) based Smart Agriculture Aiming to Achieve Sustainable Goals 2022-06-07
Show

Despite the fact, a handful of scholars have endorsed the Internet of Things (IoT) as an effective transformative tool for shifting traditional farming to smart farming, relatively little study has addressed the enabling role of smart agriculture in achieving sustainable agriculture and green climate. Researchers are more focused on technological invention and model introduction rather than discussing societal or global development goals. Sustainable development goals (SDGs) designed by United Nations (UN), therefore demand discussions as SDGs targets have a closer implication of technology. To fill this gap, in this study a model of smart agriculture is developed and centring the model we investigated how the model addresses SDGs targets. The investigation suggests that smart agriculture supports targets mentioned in Goal 6, 7, 8, 9, 11 and 12 of SDG. This research is very important, both for developing and developed nations since most of the nations are moving more towards industrialization and aiming to achieve the SDG goals This research is expected to provide a path to the IT practitioners, governments and developing agencies on how technological intervention can provide a more sustainable agricultural world.

18 pa...

18 pages and 9 figures

A Data Cube of Big Satellite Image Time-Series for Agriculture Monitoring 2022-05-16
Show

The modernization of the Common Agricultural Policy (CAP) requires the large scale and frequent monitoring of agricultural land. Towards this direction, the free and open satellite data (i.e., Sentinel missions) have been extensively used as the sources for the required high spatial and temporal resolution Earth observations. Nevertheless, monitoring the CAP at large scales constitutes a big data problem and puts a strain on CAP paying agencies that need to adapt fast in terms of infrastructure and know-how. Hence, there is a need for efficient and easy-to-use tools for the acquisition, storage, processing and exploitation of big satellite data. In this work, we present the Agriculture monitoring Data Cube (ADC), which is an automated, modular, end-to-end framework for discovering, pre-processing and indexing optical and Synthetic Aperture Radar (SAR) images into a multidimensional cube. We also offer a set of powerful tools on top of the ADC, including i) the generation of analysis-ready feature spaces of big satellite data to feed downstream machine learning tasks and ii) the support of Satellite Image Time-Series (SITS) analysis via services pertinent to the monitoring of the CAP (e.g., detecting trends and events, monitoring the growth status etc.). The knowledge extracted from the SITS analyses and the machine learning tasks returns to the data cube, building scalable country-specific knowledge bases that can efficiently answer complex and multi-faceted geospatial queries.

This ...

This work has been accepted for publication in IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP 2022)

Towards Space-to-Ground Data Availability for Agriculture Monitoring 2022-05-16
Show

The recent advances in machine learning and the availability of free and open big Earth data (e.g., Sentinel missions), which cover large areas with high spatial and temporal resolution, have enabled many agriculture monitoring applications. One example is the control of subsidy allocations of the Common Agricultural Policy (CAP). Advanced remote sensing systems have been developed towards the large-scale evidence-based monitoring of the CAP. Nevertheless, the spatial resolution of satellite images is not always adequate to make accurate decisions for all fields. In this work, we introduce the notion of space-to-ground data availability, i.e., from the satellite to the field, in an attempt to make the best out of the complementary characteristics of the different sources. We present a space-to-ground dataset that contains Sentinel-1 radar and Sentinel-2 optical image time-series, as well as street-level images from the crowdsourcing platform Mapillary, for grassland fields in the area of Utrecht for 2017. The multifaceted utility of our dataset is showcased through the downstream task of grassland classification. We train machine and deep learning algorithms on these different data domains and highlight the potential of fusion techniques towards increasing the reliability of decisions.

Has b...

Has been accepted for publication in IEEE IVMSP 2022: https://2022.ivmsp.org/ Specifically in the special session "Multimodal Analysis, Fusion and Retrieval of satellite images": https://2022.ivmsp.org/wp-content/uploads/2022/02/IVMSP2022-CFP-SpecialSession-4-MultiSat-rev.pdf

Dynamic Structure Learning through Graph Neural Network for Forecasting Soil Moisture in Precision Agriculture 2022-05-16
Show

Soil moisture is an important component of precision agriculture as it directly impacts the growth and quality of vegetation. Forecasting soil moisture is essential to schedule the irrigation and optimize the use of water. Physics based soil moisture models need rich features and heavy computation which is not scalable. In recent literature, conventional machine learning models have been applied for this problem. These models are fast and simple, but they often fail to capture the spatio-temporal correlation that soil moisture exhibits over a region. In this work, we propose a novel graph neural network based solution that learns temporal graph structures and forecast soil moisture in an end-to-end framework. Our solution is able to handle the problem of missing ground truth soil moisture which is common in practice. We show the merit of our algorithm on real-world soil moisture data.

Accep...

Accepted for publication in IJCAI 2022

Towards a Cybersecurity Testbed for Agricultural Vehicles and Environments 2022-05-12
Show

In today's modern farm, an increasing number of agricultural systems and vehicles are connected to the Internet. While the benefits of networked agricultural machinery are attractive, this technological shift is also creating an environment that is conducive to cyberattacks. While previous research has focused on general cybersecurity concerns in the farming and agricultural industries, minimal research has focused on techniques for identifying security vulnerabilities within actual agricultural systems that could be exploited by cybercriminals. Hence, this paper presents STAVE - a Security Testbed for Agricultural Vehicles and Environments - as a potential solution to assist with the identification of cybersecurity vulnerabilities within commercially available off-the-shelf components used in certain agricultural systems. This paper reports ongoing research efforts to develop and refine the STAVE testbed, along with describing initial cybersecurity experimentation which aims to identify security vulnerabilities within wireless and Controller Area Network (CAN) Bus agricultural vehicle components.

Prese...

Presented at 17th Midwest Association for Information Systems Conference (MWAIS 2022)At: Omaha, NE, USA

Towards assessing agricultural land suitability with causal machine learning 2022-04-27
Show

Understanding the suitability of agricultural land for applying specific management practices is of great importance for sustainable and resilient agriculture against climate change. Recent developments in the field of causal machine learning enable the estimation of intervention impacts on an outcome of interest, for samples described by a set of observed characteristics. We introduce an extensible data-driven framework that leverages earth observations and frames agricultural land suitability as a geospatial impact assessment problem, where the estimated effects of agricultural practices on agroecosystems serve as a land suitability score and guide decision making. We formulate this as a causal machine learning task and discuss how this approach can be used for agricultural planning in a changing climate. Specifically, we extract the agricultural management practices of "crop rotation" and "landscape crop diversity" from crop type maps, account for climate and land use data, and use double machine learning to estimate their heterogeneous effect on Net Primary Productivity (NPP), within the Flanders region of Belgium from 2010 to 2020. We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP. Finally, we observe considerable effect heterogeneity in space for both practices and analyze it.

This ...

This work has been accepted for publication in EARTHVISION 2022, in conjunction with the Computer Vision and Pattern Recognition (CVPR) 2022 Conference

Augmentation Invariance and Adaptive Sampling in Semantic Segmentation of Agricultural Aerial Images 2022-04-17
Show

In this paper, we investigate the problem of Semantic Segmentation for agricultural aerial imagery. We observe that the existing methods used for this task are designed without considering two characteristics of the aerial data: (i) the top-down perspective implies that the model cannot rely on a fixed semantic structure of the scene, because the same scene may be experienced with different rotations of the sensor; (ii) there can be a strong imbalance in the distribution of semantic classes because the relevant objects of the scene may appear at extremely different scales (e.g., a field of crops and a small vehicle). We propose a solution to these problems based on two ideas: (i) we use together a set of suitable augmentation and a consistency loss to guide the model to learn semantic representations that are invariant to the photometric and geometric shifts typical of the top-down perspective (Augmentation Invariance); (ii) we use a sampling method (Adaptive Sampling) that selects the training images based on a measure of pixel-wise distribution of classes and actual network confidence. With an extensive set of experiments conducted on the Agriculture-Vision dataset, we demonstrate that our proposed strategies improve the performance of the current state-of-the-art method.

CVPR ...

CVPR 2022 Workshop - Agriculture Vision

Generative Adversarial Networks for Image Augmentation in Agriculture: A Systematic Review 2022-04-12
Show

In agricultural image analysis, optimal model performance is keenly pursued for better fulfilling visual recognition tasks (e.g., image classification, segmentation, object detection and localization), in the presence of challenges with biological variability and unstructured environments. Large-scale, balanced and ground-truthed image datasets, however, are often difficult to obtain to fuel the development of advanced, high-performance models. As artificial intelligence through deep learning is impacting analysis and modeling of agricultural images, data augmentation plays a crucial role in boosting model performance while reducing manual efforts for data preparation, by algorithmically expanding training datasets. Beyond traditional data augmentation techniques, generative adversarial network (GAN) invented in 2014 in the computer vision community, provides a suite of novel approaches that can learn good data representations and generate highly realistic samples. Since 2017, there has been a growth of research into GANs for image augmentation or synthesis in agriculture for improved model performance. This paper presents an overview of the evolution of GAN architectures followed by a systematic review of their application to agriculture (https://github.com/Derekabc/GANs-Agriculture), involving various vision tasks for plant health, weeds, fruits, aquaculture, animal farming, plant phenotyping as well as postharvest detection of fruit defects. Challenges and opportunities of GANs are discussed for future research.

32 pages, 15 figures
Towards Data-Driven Precision Agriculture using Open Data and Open Source Software 2022-04-12
Show

Information and communications technology (ICT) within the agricultural sector is characterized by a widespread use of proprietary data formats, a strong lack of interoperability standards, and a tight connection to specific hardware implementations resulting from vendor lock-in. This partly explains why ICT has not yet had its full impact within the domain. By utilizing the vast amount of publicly available open data, ranging from topographic maps to multispectral satellite images, the economically and environmentally optimal farming practices can be advanced beyond state of the art. This paper addresses the potential of applying publicly available information sources to improve crop production, with emphasis on yield optimization. This potential is evaluated based on free public data for the growth season 2016 by examining winter wheat production for a selected region in Denmark. Data aggregation is performed by promoting opensource software tools as a foundation for decision support. That allows the farmer, or another domain expert, to query a certain crop type, merge this information with other data sets, and perform analysis on data ranging from sub-field analysis to statistics on national/regional scale. The registration of field polygons and sowed crop types for fields in Denmark, alongside with detailed geographic data and free satellite images, enable us to exploit publicly available data of high quality, which can be applied to perform further analysis.

6 pages, 6 figures
Self-supervised learning -- A way to minimize time and effort for precision agriculture? 2022-04-05
Show

Machine learning, satellites or local sensors are key factors for a sustainable and resource-saving optimisation of agriculture and proved its values for the management of agricultural land. Up to now, the main focus was on the enlargement of data which were evaluated by means of supervised learning methods. Nevertheless, the need for labels is also a limiting and time-consuming factor, while in contrast, ongoing technological development is already providing an ever-increasing amount of unlabeled data. Self-supervised learning (SSL) could overcome this limitation and incorporate existing unlabeled data. Therefore, a crop type data set was utilized to conduct experiments with SSL and compare it to supervised methods. A unique feature of our data set from 2016 to 2018 was a divergent climatological condition in 2018 that reduced yields and affected the spectral fingerprint of the plants. Our experiments focused on predicting 2018 using SLL without or a few labels to clarify whether new labels should be collected for an unknown year. Despite these challenging conditions, the results showed that SSL contributed to higher accuracies. We believe that the results will encourage further improvements in the field of precision farming, why the SSL framework and data will be published (Marszalek, 2021).

Accep...

Accepted for ISPRS Archives 2022

Diagnosing Data from ICTs to Provide Focused Assistance in Agricultural Adoptions 2022-04-02
Show

In the last two decades, ICTs have played a pivotal role in empowering rural populations in India by making knowledge more accessible. Digital Green (DG) is one such ICT that employs a participatory approach with smallholder farmers to produce instructional videos that encompass content specific to them. With help of human mediators, they disseminate these videos using projectors to improve the adoption of agricultural practices. DG's web-based data tracker stores attendance and adoption logs of millions of farmers, videos screened and their demographic information. We leverage this data for a period of ten years between 2010-2020 across five states in India and use it to conduct a holistic evaluation of the ICT. First, we find disparities in adoption rates of farmers, following which we use statistical tests to identify different factors that lead to these disparities and gender-based inequalities. Second, to provide assistance to farmers facing challenges, we model the adoption of practices from a video as a prediction problem and experiment with different model architectures. Our classifier achieves accuracies ranging from 79% to 90% across the five states, demonstrating its potential for assisting future ethnographic investigations. Third, we use SHAP values in conjunction with our model for explaining the impact of various network, content and demographic features on adoption. Our research finds that farmers greatly benefit from past adopters of a video from their group and village. We also discover that videos with a low content-specificity benefit some farmers more than others. Next, we highlight the implications of our findings by translating them into recommendations for community building, revisiting participatory approach and mitigating inequalities. We conclude with a discussion on how our work can assist future investigations into the lived experiences of farmers.

Development of a Scale to Measure Technology Acceptance in Smart Agriculture 2022-03-29
Show

This paper describes the development of a scale to measure technology acceptance in smart agriculture. The scale is intended for use in diverse situations, ranging for the evaluation of existing technologies already in widespread use, to the evaluation of prototype systems. A systematic screening of prior literature was conducted to identify initial scale items regarding how technology acceptance is currently understood and measured. These items were iteratively reviewed and systematically categorised to develop the final scale proposed in this paper. In future work, this scale will be validated through user studies. The purpose of this paper is to make the initial scale available to the research community with a view to initial use and further evaluation.

Investigating End-Users' Values in Agriculture Mobile Applications Development: An Empirical Study on Bangladeshi Female Farmers 2022-03-19
Show

The omnipresent nature of mobile applications (apps) in all aspects of daily lives raises the necessity of reflecting end-users values (e.g., fairness, honesty, etc.) in apps. However, there are limited considerations of end-users values in apps development. Value violations by apps have been reported in the media and are responsible for end-users dissatisfaction and negative socio-economic consequences. Value violations may bring more severe and lasting problems for marginalized and vulnerable end-users of apps, which have been explored less (if at all) in the software engineering community. However, understanding the values of the end-users of apps is the essential first step towards values-based apps development. This research aims to fill this gap by investigating the human values of Bangladeshi female farmers as a marginalized and vulnerable group of end-users of Bangladeshi agriculture apps. We conducted an empirical study that collected and analyzed data from a survey with 193 Bangladeshi female farmers to explore the underlying factor structure of the values of Bangladeshi female farmers and the significance of demographics on their values. The results identified three underlying factors of Bangladeshi female farmers. The first factor comprises of five values: benevolence, security, conformity, universalism, and tradition. The second factor consists of two values: self-direction and stimulation. The third factor includes three values: power, achievement, and hedonism. We also identified strong influences of demographics on some of the values of Bangladeshi female farmers. For example, area has significant impacts on three values: hedonism, achievement, and tradition. Similarly, there are also strong influences of household income on power and security.

44 pa...

44 pages, 7 figures, 8 tables, Journal of Systems and Software

IGrow: A Smart Agriculture Solution to Autonomous Greenhouse Control 2022-03-14
Show

Agriculture is the foundation of human civilization. However, the rapid increase of the global population poses a challenge on this cornerstone by demanding more food. Modern autonomous greenhouses, equipped with sensors and actuators, provide a promising solution to the problem by empowering precise control for high-efficient food production. However, the optimal control of autonomous greenhouses is challenging, requiring decision-making based on high-dimensional sensory data, and the scaling of production is limited by the scarcity of labor capable of handling this task. With the advances of artificial intelligence (AI), the internet of things (IoT), and cloud computing technologies, we are hopeful to provide a solution to automate and smarten greenhouse control to address the above challenges. In this paper, we propose a smart agriculture solution named iGrow, for autonomous greenhouse control (AGC): (1) for the first time, we formulate the AGC problem as a Markov decision process (MDP) optimization problem; (2) we design a neural network-based simulator incorporated with the incremental mechanism to simulate the complete planting process of an autonomous greenhouse, which provides a testbed for the optimization of control strategies; (3) we propose a closed-loop bi-level optimization algorithm, which can dynamically re-optimize the greenhouse control strategy with newly observed data during real-world production. We not only conduct simulation experiments but also deploy iGrow in real scenarios, and experimental results demonstrate the effectiveness and superiority of iGrow in autonomous greenhouse simulation and optimal control. Particularly, compelling results from the tomato pilot project in real autonomous greenhouses show that our solution significantly increases crop yield (+10.15%) and net profit (+92.70%) with statistical significance compared to planting experts.

9 pag...

9 pages, 5 figures, 2 tables, accepted by AAAI 2022

Towards On-Device AI and Blockchain for 6G enabled Agricultural Supply-chain Management 2022-03-12
Show

6G envisions artificial intelligence (AI) powered solutions for enhancing the quality-of-service (QoS) in the network and to ensure optimal utilization of resources. In this work, we propose an architecture based on the combination of unmanned aerial vehicles (UAVs), AI and blockchain for agricultural supply-chain management with the purpose of ensuring traceability, transparency, tracking inventories and contracts. We propose a solution to facilitate on-device AI by generating a roadmap of models with various resource-accuracy trade-offs. A fully convolutional neural network (FCN) model is used for biomass estimation through images captured by the UAV. Instead of a single compressed FCN model for deployment on UAV, we motivate the idea of iterative pruning to provide multiple task-specific models with various complexities and accuracy. To alleviate the impact of flight failure in a 6G enabled dynamic UAV network, the proposed model selection strategy will assist UAVs to update the model based on the runtime resource requirements.

8 pag...

8 pages, 5 figures, 1 table. Accepted to IEEE Internet of Things Magazine

Information and communication technology initiatives for knowledge sharing in agriculture 2022-02-17
Show

A survey on status and trends of information and communication technologies (ICT) use for knowledge sharing in agriculture was attempted. Among asian countries, India comes under the second next category after the advanced user category comprising Japan, South Korea and Taiwan. Both profit-motive and business augmentation on one hand and community services and rural welfare on the other have been the objectives of ICT-based models in agriculture in India. The ICT endeavours for agriculture belong to a wide array of agencies, viz private sector, public sector, self-help groups and NGOs, and also include combined endeavours. e-Learning is being increasingly resorted to both in (i) in campus or 'presence' mode, and (ii) 'distance' mode. Its use is gradually easing-out the stakeholders from the stranglehold of the inter-deterrence of the 3 arms of the 'Iron Triangle', viz (i) quality, (ii) access, and (iii) cost. The social groups having less mobility are poised to benefit more from this mode of education. This could also be one of the potent tools to bring about gender mainstreaming. e-Learning is being integrated into the existing organizational and educational structure as a hybrid system that can be called 'ICT-supported learning'. Connectivity, content development, infrastructure development, faculty developmeat, need assessment on a continuum, linking the node3 and formation of consortia etc. are the areas identified that need to be supported and developed.

http:...

http://epubs.icar.org.in/ejournal/index.php/IJAgS/article/view/9934

TIML: Task-Informed Meta-Learning for Agriculture 2022-02-04
Show

Labeled datasets for agriculture are extremely spatially imbalanced. When developing algorithms for data-sparse regions, a natural approach is to use transfer learning from data-rich regions. While standard transfer learning approaches typically leverage only direct inputs and outputs, geospatial imagery and agricultural data are rich in metadata that can inform transfer learning algorithms, such as the spatial coordinates of data-points or the class of task being learned. We build on previous work exploring the use of meta-learning for agricultural contexts in data-sparse regions and introduce task-informed meta-learning (TIML), an augmentation to model-agnostic meta-learning which takes advantage of task-specific metadata. We apply TIML to crop type classification and yield estimation, and find that TIML significantly improves performance compared to a range of benchmarks in both contexts, across a diversity of model architectures. While we focus on tasks from agriculture, TIML could offer benefits to any meta-learning setup with task-specific metadata, such as classification of geo-tagged images and species distribution modelling.

12 pages, 4 figures
STRIDE-based Cyber Security Threat Modeling for IoT-enabled Precision Agriculture Systems 2022-01-30
Show

The concept of traditional farming is changing rapidly with the introduction of smart technologies like the Internet of Things (IoT). Under the concept of smart agriculture, precision agriculture is gaining popularity to enable Decision Support System (DSS)-based farming management that utilizes widespread IoT sensors and wireless connectivity to enable automated detection and optimization of resources. Undoubtedly the success of the system would be impacted on crop productivity, where failure would impact severely. Like many other cyber-physical systems, one of the growing challenges to avoid system adversity is to ensure the system's security, privacy, and trust. But what are the vulnerabilities, threats, and security issues we should consider while deploying precision agriculture? This paper has conducted a holistic threat modeling on component levels of precision agriculture's standard infrastructure using popular threat intelligence tools STRIDE to identify common security issues. Our modeling identifies a noticing of fifty-eight potential security threats to consider. This presentation systematically presented them and advised general mitigation suggestions to support cyber security in precision agriculture.

Everything You wanted to Know about Smart Agriculture 2022-01-13
Show

The world population is anticipated to increase by close to 2 billion by 2050 causing a rapid escalation of food demand. A recent projection shows that the world is lagging behind accomplishing the "Zero Hunger" goal, in spite of some advancements. Socio-economic and well being fallout will affect the food security. Vulnerable groups of people will suffer malnutrition. To cater to the needs of the increasing population, the agricultural industry needs to be modernized, become smart, and automated. Traditional agriculture can be remade to efficient, sustainable, eco-friendly smart agriculture by adopting existing technologies. In this survey paper the authors present the applications, technological trends, available datasets, networking options, and challenges in smart agriculture. How Agro Cyber Physical Systems are built upon the Internet-of-Agro-Things is discussed through various application fields. Agriculture 4.0 is also discussed as a whole. We focus on the technologies, such as Artificial Intelligence (AI) and Machine Learning (ML) which support the automation, along with the Distributed Ledger Technology (DLT) which provides data integrity and security. After an in-depth study of different architectures, we also present a smart agriculture framework which relies on the location of data processing. We have divided open research problems of smart agriculture as future research work in two groups - from a technological perspective and from a networking perspective. AI, ML, the blockchain as a DLT, and Physical Unclonable Functions (PUF) based hardware security fall under the technology group, whereas any network related attacks, fake data injection and similar threats fall under the network research problem group.

45 pages, 27 Figures
Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision 2022-01-11
Show

UAV-based image retrieval in modern agriculture enables gathering large amounts of spatially referenced crop image data. In large-scale experiments, however, UAV images suffer from containing a multitudinous amount of crops in a complex canopy architecture. Especially for the observation of temporal effects, this complicates the recognition of individual plants over several images and the extraction of relevant information tremendously. In this work, we present a hands-on workflow for the automatized temporal and spatial identification and individualization of crop images from UAVs abbreviated as "cataloging" based on comprehensible computer vision methods. We evaluate the workflow on two real-world datasets. One dataset is recorded for observation of Cercospora leaf spot - a fungal disease - in sugar beet over an entire growing cycle. The other one deals with harvest prediction of cauliflower plants. The plant catalog is utilized for the extraction of single plant images seen over multiple time points. This gathers large-scale spatio-temporal image dataset that in turn can be applied to train further machine learning models including various data layers. The presented approach improves analysis and interpretation of UAV data in agriculture significantly. By validation with some reference data, our method shows an accuracy that is similar to more complex deep learning-based recognition techniques. Our workflow is able to automatize plant cataloging and training image extraction, especially for large datasets.

Prepr...

Preprint submitted to GigaScience

An Ontological Knowledge Representation for Smart Agriculture 2021-12-21
Show

In order to provide the agricultural industry with the infrastructure it needs to take advantage of advanced technology, such as big data, the cloud, and the internet of things (IoT); smart farming is a management concept that focuses on providing the infrastructure necessary to track, monitor, automate, and analyse operations. To represent the knowledge extracted from the primary data collected is of utmost importance. An agricultural ontology framework for smart agriculture systems is presented in this study. The knowledge graph is represented as a lattice to capture and perform reasoning on spatio-temporal agricultural data.

Cognitive factors that affect the adoption of autonomous agriculture 2021-11-28
Show

Robotic and Autonomous Agricultural Technologies (RAAT) are increasingly available yet may fail to be adopted. This paper focusses specifically on cognitive factors that affect adoption including: inability to generate trust, loss of farming knowledge and reduced social cognition. It is recommended that agriculture develops its own framework for the performance and safety of RAAT drawing on human factors research in aerospace engineering including human inputs (individual variance in knowledge, skills, abilities, preferences, needs and traits), trust, situational awareness and cognitive load. The kinds of cognitive impacts depend on the RAATs level of autonomy, ie whether it has automatic, partial autonomy and autonomous functionality and stage of adoption, ie adoption, initial use or post-adoptive use. The more autonomous a system is, the less a human needs to know to operate it and the less the cognitive load, but it also means farmers have less situational awareness about on farm activities that in turn may affect strategic decision-making about their enterprise. Some cognitive factors may be hidden when RAAT is first adopted but play a greater role during prolonged or intense post-adoptive use. Systems with partial autonomy need intuitive user interfaces, engaging system information, and clear signaling to be trusted with low level tasks; and to compliment and augment high order decision-making on farm.

20 pa...

20 pages, 4 figures, published in Farm Policy Journal

Visualization and Attack Prevention for a Sensor-Based Agricultural Monitoring System 2021-11-28
Show

This project proposes a sensor-based visual agricultural monitoring system. Distinguished from traditional agricultural monitoring systems, this system further analyzes basic agricultural data and prevents and monitors common wireless network attacks such as Selective Forwarding, Black Hole Attacks, Sinkhole Attacks, Flooding Attacks and Misdirection Attacks. Experimental verification and evaluation of the attack prevention and monitoring are also conducted.

Public Policymaking for International Agricultural Trade using Association Rules and Ensemble Machine Learning 2021-11-15
Show

International economics has a long history of improving our understanding of factors causing trade, and the consequences of free flow of goods and services across countries. The recent shocks to the free trade regime, especially trade disputes among major economies, as well as black swan events, such as trade wars and pandemics, raise the need for improved predictions to inform policy decisions. AI methods are allowing economists to solve such prediction problems in new ways. In this manuscript, we present novel methods that predict and associate food and agricultural commodities traded internationally. Association Rules (AR) analysis has been deployed successfully for economic scenarios at the consumer or store level, such as for market basket analysis. In our work however, we present analysis of imports and exports associations and their effects on commodity trade flows. Moreover, Ensemble Machine Learning methods are developed to provide improved agricultural trade predictions, outlier events' implications, and quantitative pointers to policy makers.

Paper...

Paper published at Elsevier's Journal of Machine Learning with Applications https://www.sciencedirect.com/science/article/pii/S2666827021000232

DeepAg: Deep Learning Approach for Measuring the Effects of Outlier Events on Agricultural Production and Policy 2021-11-06
Show

Quantitative metrics that measure the global economy's equilibrium have strong and interdependent relationships with the agricultural supply chain and international trade flows. Sudden shocks in these processes caused by outlier events such as trade wars, pandemics, or weather can have complex effects on the global economy. In this paper, we propose a novel framework, namely: DeepAg, that employs econometrics and measures the effects of outlier events detection using Deep Learning (DL) to determine relationships between commonplace financial indices (such as the DowJones), and the production values of agricultural commodities (such as Cheese and Milk). We employed a DL technique called Long Short-Term Memory (LSTM) networks successfully to predict commodity production with high accuracy and also present five popular models (regression and boosting) as baselines to measure the effects of outlier events. The results indicate that DeepAg with outliers' considerations (using Isolation Forests) outperforms baseline models, as well as the same model without outliers detection. Outlier events make a considerable impact when predicting commodity production with respect to financial indices. Moreover, we present the implications of DeepAg on public policy, provide insights for policymakers and farmers, and for operational decisions in the agricultural ecosystem. Data are collected, models developed, and the results are recorded and presented.

Prese...

Presented at AAAI FSS-21: Artificial Intelligence in Government and Public Sector, Washington, DC, USA

Combining expert knowledge and neural networks to model environmental stresses in agriculture 2021-10-26
Show

In this work we combine representation learning capabilities of neural network with agricultural knowledge from experts to model environmental heat and drought stresses. We first design deterministic expert models which serve as a benchmark and inform the design of flexible neural-network architectures. Finally, a sensitivity analysis of the latter allows a clustering of hybrids into susceptible and resistant ones.

19 pa...

19 pages, Winners of the 2019 Syngenta Crop Challenge

The Digital Agricultural Revolution: a Bibliometric Analysis Literature Review 2021-10-18
Show

The application of digital technologies in agriculture can improve traditional practices to adapt to climate change, reduce Greenhouse Gases (GHG) emissions, and promote a sustainable intensification for food security. Some authors argued that we are experiencing a Digital Agricultural Revolution (DAR) that will boost sustainable farming. This study aims to find evidence of the ongoing DAR process and clarify its roots, what it means, and where it is heading. We investigated the scientific literature with bibliometric analysis tools to produce an objective and reproducible literature review. We retrieved 4995 articles by querying the Web of Science database in the timespan 2012-2019, and we analyzed the obtained dataset to answer three specific research questions: i) what is the spectrum of the DAR-related terminology?; ii) what are the key articles and the most influential journals, institutions, and countries?; iii) what are the main research streams and the emerging topics? By grouping the authors' keywords reported on publications, we identified five main research streams: Climate-Smart Agriculture (CSA), Site-Specific Management (SSM), Remote Sensing (RS), Internet of Things (IoT), and Artificial Intelligence (AI). To provide a broad overview of each of these topics, we analyzed relevant review articles, and we present here the main achievements and the ongoing challenges. Finally, we showed the trending topics of the last three years (2017, 2018, 2019).

Analysis of Indian Agricultural Ecosystem using Knowledge-based Tantra Framework 2021-10-13
Show

The information systems have been extremely useful in managing businesses, enterprises, and public institutions such as government departments. But current challenges are increasingly about managing ecosystems. Ecosystem is a useful paradigm to better understand a variety of domains such as biology, business, industry, agriculture, and society. In this paper, we look at the Indian Agricultural ecosystem. It is a mammoth task to assimilate the information for the whole ecosystem consisting of consumers, producers, workers, traders, transporters, industry, and Government. There are myriad interventions by the state and the central Governments, whose efficacy is difficult to track and the outcomes hard to assess. A policy intervention that helps one part of the ecosystem can harm the other. In addition, sustainability and ecological considerations are also extremely important. In this paper, we make use of the Knowledge-based Tantra Social Information Management Framework to analyze the Indian Agricultural Ecosystem and build related Knowledge Graphs. Our analysis spans descriptive, normative, and transformative viewpoints. Tantra Framework makes use of concepts from Zachman Framework to manage aspects of social information through different perspectives and concepts from Unified Foundational Ontology (UFO) to represent interrelationships between aspects.

16 Ta...

16 Tables, 6 Figures, draws heavily on arXiv:2102.04206. Submitted to CSI Transactions on ICT Journal

Human Values in Mobile App Development: An Empirical Study on Bangladeshi Agriculture Mobile Apps 2021-10-11
Show

Given the ubiquity of mobile applications (apps) in daily lives, understanding and reflecting end-users' human values (e.g., transparency, privacy, social recognition etc.) in apps has become increasingly important. Violations of end users' values by software applications have been reported in the media and have resulted in a wide range of difficulties for end users. Value violations may bring more and lasting problems for marginalized and vulnerable groups of end-users. This research aims to understand the extent to which the values of Bangladeshi female farmers, marginalized and vulnerable end-users, who are less studied by the software engineering community, are reflected in agriculture apps in Bangladesh. Further to this, we aim to identify possible strategies to embed their values in those apps. To this end, we conducted a mixed-methods empirical study consisting of 13 interviews with app practitioners and four focus groups with 20 Bangladeshi female farmers. The accumulated results from the interviews and focus groups identified 22 values of Bangladeshi female farmers, which the participants expect to be reflected in the agriculture apps. Among these 22 values, 15 values (e.g., accuracy, independence) are already reflected and 7 values (e.g., accessibility, pleasure) are ignored/violated in the existing agriculture apps. We also identified 14 strategies (e.g., "applying human-centered approaches to elicit values", "establishing a dedicated team/person for values concerns") to address Bangladeshi female farmers' values in agriculture apps.

18 pa...

18 pages, 6 figures, Manuscript submitted to IEEE Transactions on Software Engineering (2021)

ORPHEUS: Living Labs for End-to-End Data Infrastructures for Digital Agriculture 2021-10-04
Show

IoT networks are being used to collect, analyze, and utilize sensor data. There are still some key requirements to leverage IoT networks in digital agriculture, e.g., design and deployment of energy saving and ruggedized sensor nodes (SN), reliable and long-range wireless network connectivity, end-to-end data collection pipelines for batch and streaming data. Thus, we introduce our living lab ORPHEUS and its design and implementation trajectory to showcase our orchestrated testbed of IoT sensors, data connectivity, database orchestration, and visualization dashboard. We deploy light-weight energy saving SNs in the field to collect data, using LoRa (Long Range wireless) to transmit data from the SNs to the Gateway node, upload all the data to the database server, and finally visualize the data. For future exploration, we also built a testbed of embedded devices using four different variants of NVIDIA Jetson development modules (Nano, TX2, Xavier NX, AGX Xavier) to benchmark the potential upgrade choices for SNs in ORPHEUS. Based on our deployment in multiple farms in a 3-county region around Purdue University, and on the Purdue University campus, we present analyses from our living lab deployment and additional components of the next-generation IoT farm.

Towards practical object detection for weed spraying in precision agriculture 2021-09-22
Show

The evolution of smaller, faster processors and cheaper digital storage mechanisms across the last 4-5 decades has vastly increased the opportunity to integrate intelligent technologies in a wide range of practical environments to address a broad spectrum of tasks. One exciting application domain for such technologies is precision agriculture, where the ability to integrate on-board machine vision with data-driven actuation means that farmers can make decisions about crop care and harvesting at the level of the individual plant rather than the whole field. This makes sense both economically and environmentally. However, the key driver for this capability is fast and robust machine vision -- typically driven by machine learning (ML) solutions and dependent on accurate modelling. One critical challenge is that the bulk of ML-based vision research considers only metrics that evaluate the accuracy of object detection and do not assess practical factors. This paper introduces three metrics that highlight different aspects relevant for real-world deployment of precision weeding and demonstrates their utility through experimental results.

7 pag...

7 pages, 5 figures, 4 tables

Multi-Domain Few-Shot Learning and Dataset for Agricultural Applications 2021-09-21
Show

Automatic classification of pests and plants (both healthy and diseased) is of paramount importance in agriculture to improve yield. Conventional deep learning models based on convolutional neural networks require thousands of labeled examples per category. In this work we propose a method to learn from a few samples to automatically classify different pests, plants, and their diseases, using Few-Shot Learning (FSL). We learn a feature extractor to generate embeddings and then update the embeddings using Transformers. Using Mahalanobis distance, a class-covariance-based metric, we then calculate the similarity of the transformed embeddings with the embedding of the image to be classified. Using our proposed architecture, we conduct extensive experiments on multiple datasets showing the effectiveness of our proposed model. We conduct 42 experiments in total to comprehensively analyze the model and it achieves up to 14% and 24% performance gains on few-shot image classification benchmarks on two datasets. We also compile a new FSL dataset containing images of healthy and diseased plants taken in real-world settings. Using our proposed architecture which has been shown to outperform several existing FSL architectures in agriculture, we provide strong baselines on our newly proposed dataset.

Navigational Path-Planning For All-Terrain Autonomous Agricultural Robot 2021-09-07
Show

The shortage of workforce and increasing cost of maintenance has forced many farm industrialists to shift towards automated and mechanized approaches. The key component for autonomous systems is the path planning techniques used. Coverage path planning (CPP) algorithm is used for navigating over farmlands to perform various agricultural operations such as seeding, ploughing, or spraying pesticides and fertilizers. This report paper compares novel algorithms for autonomous navigation of farmlands. For reduction of navigational constraints, a high-resolution grid map representation is taken into consideration specific to Indian environments. The free space is covered by distinguishing the grid cells as covered, unexplored, partially explored and presence of an obstacle. The performance of the compared algorithms is evaluated with metrics such as time efficiency, space efficiency, accuracy, and robustness to changes in the environment. Robotic Operating System (ROS), Dassault Systemes Experience Platform (3DS Experience), MATLAB along Python were used for the simulation of the compared algorithms. The results proved the applicability of the algorithms for autonomous field navigation and feasibility with robotic path planning.

8 pag...

8 pages, 23 figures, 1 table

Virtual Temporal Samples for Recurrent Neural Networks: applied to semantic segmentation in agriculture 2021-09-05
Show

This paper explores the potential for performing temporal semantic segmentation in the context of agricultural robotics without temporally labelled data. We achieve this by proposing to generate virtual temporal samples from labelled still images. By exploiting the relatively static scene and assuming that the robot (camera) moves we are able to generate virtually labelled temporal sequences with no extra annotation effort. Normally, to train a recurrent neural network (RNN), labelled samples from a video (temporal) sequence are required which is laborious and has stymied work in this direction. By generating virtual temporal samples, we demonstrate that it is possible to train a lightweight RNN to perform semantic segmentation on two challenging agricultural datasets. Our results show that by training a temporal semantic segmenter using virtual samples we can increase the performance by an absolute amount of $4.6$ and $4.9$ on sweet pepper and sugar beet datasets, respectively. This indicates that our virtual data augmentation technique is able to accurately classify agricultural images temporally without the use of complicated synthetic data generation techniques nor with the overhead of labelling large amounts of temporal sequences.

Land use change in agricultural systems: an integrated ecological-social simulation model of farmer decisions and cropping system performance based on a cellular automata approach 2021-09-05
Show

Agricultural systems experience land-use changes that are driven by population growth and intensification of technological inputs. This results in land-use and cover change (LUCC) dynamics representing a complex landscape transformation process. In order to study the LUCC process we developed a spatially explicit agent-based model in the form of a Cellular Automata implemented with the Cell-DEVS formalism. The resulting model called AgroDEVS is used for predicting LUCC dynamics along with their associated economic and environmental changes. AgroDEVS is structured using behavioral rules and functions representing a) crop yields, b) weather conditions, c) economic profit, d) farmer preferences, e) technology level adoption and f) natural resources consumption based on embodied energy accounting. Using data from a typical location of the Pampa region (Argentina) for the 1988-2015 period, simulation exercises showed that the economic goals were achieved, on average, each 6 out of 10 years, but the environmental thresholds were only achieved in 1.9 out of 10 years. In a set of 50-years simulations, LUCC patterns quickly converge towards the most profitable crop sequences, with no noticeable tradeoff between the economic and environmental conditions.

Designs with complex blocking structures and network effects for agricultural field experiments 2021-08-24
Show

We propose a novel model-based approach for constructing optimal designs with complex blocking structures and network effects, for application in agricultural field experiments. The potential interference among treatments applied to different plots is described via a network structure, defined via the adjacency matrix. We consider a field trial run at Rothamsted Research and provide a comparison of optimal designs under various different models, including the commonly used designs in such situations. It is shown that when there is interference between treatments on neighbouring plots, due to the spatial arrangement of the plots, designs incorporating network effects are at least as, and often more efficient than, randomised row-column designs. The advantage of network designs is that we can construct the neighbour structure even for an irregular layout by means of a graph to address the particular characteristics of the experiment. The need for such designs arises when it is required to account for treatment-induced patterns of heterogeneity. Ignoring the network structure can lead to imprecise estimates of the treatment parameters and invalid conclusions.

Readiness of the South African Agricultural Sector to Implement IoT 2021-08-23
Show

As the world's population increases, so does the demand for food. This demand for food in turn puts pressure on agriculture in many countries. The impact of climate change on the environment has made it difficult to produce food that may be necessary to accommodate the growing population. Due to these concerns, the agriculture sector is forced to move towards more efficient and sustainable methods of farming to increase productivity. There is evidence that the use of technology in agriculture has the potential to improve food production and food sustainability; thereby addressing the concerns of food security. The Internet of Things (IoT) has been suggested as a potential tool for farmers to overcome the impact of climate change on food security. However, there is dearth of research on the readiness of implementing IoT in South Africa's agricultural sector. Therefore, this research aims to explore the readiness of the agricultural sector of South Africa for a wide implementation of IoT. This research conducts a desktop study through the lens of the PEST framework on the special case of South Africa. A thematic literature and documents review was deployed to examine the political, economic, societal and technological factors that may facilitate or impede the implementation of IoT in the agricultural sectors of South Africa. The findings suggest that the wide ranging political, economic, societal and technological constructs enable the implementation of IoT within South Africa's agricultural sector. The most important include current policies, technological infrastructure, access to internet, and mobile technology which places South Africa in a good position to implement IoT in agriculture.

In pr...

In proceedings of the 1st Virtual Conference on Implications of Information and Digital Technologies for Development, 2021

Towards a Resilient Information System for Agriculture Extension Information Service: An Exploratory Study 2021-08-22
Show

Although digital technologies are contributing to human development, several information systems (IS) interventions for development especially in developing countries do not perform as expected nor deliver anticipated outcomes at scale. This raises questions about how to develop and enhance resilient IS for development, an area that requires more research attention. A sound and systematic understanding of the mechanisms local communities apply to maintain resilience and the key transformation areas for a resilient IS development will help to improve the situation. This study addresses how stakeholders can ensure resilient information provision within the Agricultural Extension Information Service (AEIS) and identifies the challenges in designing resilient IS. Conceptually, the study draws from the IS resilience framework. Empirically, it draws from interview data collected from the AEIS provision practice in Ethiopia. The findings show the robustness, self-organization, learning, redundancy, rapidity, scale, diversity and equality mechanisms, the challenges and the key transformations required to advance the resilience of IS for AEIS. The study contributes to the conversation on the application of the IS resilience framework in analyzing local information provision practices as well as to practice highlighting the key transformation areas to improve the effectiveness and impact of AEIS.

In pr...

In proceedings of the 1st Virtual Conference on Implications of Information and Digital Technologies for Development, 2021

Automated Pest Detection with DNN on the Edge for Precision Agriculture 2021-08-01
Show

Artificial intelligence has smoothly penetrated several economic activities, especially monitoring and control applications, including the agriculture sector. However, research efforts toward low-power sensing devices with fully functional machine learning (ML) on-board are still fragmented and limited in smart farming. Biotic stress is one of the primary causes of crop yield reduction. With the development of deep learning in computer vision technology, autonomous detection of pest infestation through images has become an important research direction for timely crop disease diagnosis. This paper presents an embedded system enhanced with ML functionalities, ensuring continuous detection of pest infestation inside fruit orchards. The embedded solution is based on a low-power embedded sensing system along with a Neural Accelerator able to capture and process images inside common pheromone-based traps. Three different ML algorithms have been trained and deployed, highlighting the capabilities of the platform. Moreover, the proposed approach guarantees an extended battery life thanks to the integration of energy harvesting functionalities. Results show how it is possible to automate the task of pest infestation for unlimited time without the farmer's intervention.

10 pa...

10 pages, 12 figures, 3 tables

Template-based Chatbot for Agriculture Related FAQs 2021-07-30
Show

Agriculture is the fundamental industry of the society, which is the basis of food supply and an important source of employment and GDP increase. However, the insufficient expert can not fulfill the demand of farmers. To address this problem, we design a chatbot to answer frequently asked questions in the Agriculture field. Template-based questions will be answered by AIML while LSA is used for other service-based questions. This chatbot will assist farmers by dealing with industry problems conveniently and efficiently.

we ne...

we need to make some revisions about the project to improve a bit

A Portable Agricultural Robot for Continuous Apparent Soil ElectricalConductivity Measurements to Improve Irrigation Practices 2021-07-20
Show

Near-ground sensing data, such as geospatial measurements of soil apparent electrical conductivity (ECa), are used in precision agriculture to improve farming practices and increase crop yield. Near-ground sensors provide valuable information, yet, the process of collecting, assessing, and interpreting measurements requires significant human labor. Automating parts of this process via the use of mobile robots can help decrease labor burden, and increase the accuracy and frequency of data collections, and overall increase the adoption and use of ECa measurement technology. This paper introduces a roboticized means to autonomously perform geospatial ECa measurements and map soil moisture content in micro-irrigated orchard systems. We retrofit a small wheeled mobile robot with a small electromagnetic induction sensor by studying and taking into consideration the effect of the robot body to the sensor's readings, and develop a software stack to enable autonomous logging of geo-referenced measurements. The proposed roboticized ECa measurement method is evaluated by mapping a 50m x 30m field against the baseline of human-conducted measurements obtained by walking the sensor in the same field and following the same path. Experimental testing reveals that our approach yields roboticized measurements comparable to human-conducted ones, despite the robot's small form factor.

Machine Learning Challenges and Opportunities in the African Agricultural Sector -- A General Perspective 2021-07-11
Show

The improvement of computers' capacities, advancements in algorithmic techniques, and the significant increase of available data have enabled the recent developments of Artificial Intelligence (AI) technology. One of its branches, called Machine Learning (ML), has shown strong capacities in mimicking characteristics attributed to human intelligence, such as vision, speech, and problem-solving. However, as previous technological revolutions suggest, their most significant impacts could be mostly expected on other sectors that were not traditional users of that technology. The agricultural sector is vital for African economies; improving yields, mitigating losses, and effective management of natural resources are crucial in a climate change era. Machine Learning is a technology with an added value in making predictions, hence the potential to reduce uncertainties and risk across sectors, in this case, the agricultural sector. The purpose of this paper is to contextualize and discuss barriers to ML-based solutions for African agriculture. In the second section, we provided an overview of ML technology from a historical and technical perspective and its main driving force. In the third section, we provided a brief review of the current use of ML in agriculture. Finally, in section 4, we discuss ML growing interest in Africa and the potential barriers to creating and using ML-based solutions in the agricultural sector.

This ...

This paper has been submitted as an internal discussion paper at AKADEMIYA2063. It has 13 pages and contains 4 images and 2 tables

Towards a Multimodal System for Precision Agriculture using IoT and Machine Learning 2021-07-10
Show

Precision agriculture system is an arising idea that refers to overseeing farms utilizing current information and communication technologies to improve the quantity and quality of yields while advancing the human work required. The automation requires the assortment of information given by the sensors such as soil, water, light, humidity, temperature for additional information to furnish the operator with exact data to acquire excellent yield to farmers. In this work, a study is proposed that incorporates all common state-of-the-art approaches for precision agriculture use. Technologies like the Internet of Things (IoT) for data collection, machine Learning for crop damage prediction, and deep learning for crop disease detection is used. The data collection using IoT is responsible for the measure of moisture levels for smart irrigation, n, p, k estimations of fertilizers for best yield development. For crop damage prediction, various algorithms like Random Forest (RF), Light gradient boosting machine (LGBM), XGBoost (XGB), Decision Tree (DT) and K Nearest Neighbor (KNN) are used. Subsequently, Pre-Trained Convolutional Neural Network (CNN) models such as VGG16, Resnet50, and DenseNet121 are also trained to check if the crop was tainted with some illness or not.

7 pag...

7 pages, this paper is accepted in the 12th ICCCNT 2021 conference at IIT Kharagpur, India. The final version of this paper will appear in the conference proceedings

Semantic Feature Matching for Robust Mapping in Agriculture 2021-07-09
Show

Visual Simultaneous Localization and Mapping (SLAM) systems are an essential component in agricultural robotics that enable autonomous navigation and the construction of accurate 3D maps of agricultural fields. However, lack of texture, varying illumination conditions, and lack of structure in the environment pose a challenge for Visual-SLAM systems that rely on traditional feature extraction and matching algorithms such as ORB or SIFT. This paper proposes 1) an object-level feature association algorithm that enables the creation of 3D reconstructions robustly by taking advantage of the structure in robotic navigation in agricultural fields, and 2) An object-level SLAM system that utilizes recent advances in deep learning-based object detection and segmentation algorithms to detect and segment semantic objects in the environment used as landmarks for SLAM. We test our SLAM system on a stereo image dataset of a sorghum field. We show that our object-based feature association algorithm enables us to map 78% of a sorghum range on average. In contrast, with traditional visual features, we achieve an average mapped distance of 38%. We also compare our system against ORB-SLAM2, a state-of-the-art visual SLAM algorithm.

6 pages, 8 figures
Navigate-and-Seek: a Robotics Framework for People Localization in Agricultural Environments 2021-07-08
Show

The agricultural domain offers a working environment where many human laborers are nowadays employed to maintain or harvest crops, with huge potential for productivity gains through the introduction of robotic automation. Detecting and localizing humans reliably and accurately in such an environment, however, is a prerequisite to many services offered by fleets of mobile robots collaborating with human workers. Consequently, in this paper, we expand on the concept of a topological particle filter (TPF) to accurately and individually localize and track workers in a farm environment, integrating information from heterogeneous sensors and combining local active sensing (exploiting a robot's onboard sensing employing a Next-Best-Sense planning approach) and global localization (using affordable IoT GNSS devices). We validate the proposed approach in topologies created for the deployment of robotics fleets to support fruit pickers in a real farm environment. By combining multi-sensor observations on the topological level complemented by active perception through the NBS approach, we show that we can improve the accuracy of picker localization in comparison to prior work.

Learned Visual Navigation for Under-Canopy Agricultural Robots 2021-07-06
Show

We describe a system for visually guided autonomous navigation of under-canopy farm robots. Low-cost under-canopy robots can drive between crop rows under the plant canopy and accomplish tasks that are infeasible for over-the-canopy drones or larger agricultural equipment. However, autonomously navigating them under the canopy presents a number of challenges: unreliable GPS and LiDAR, high cost of sensing, challenging farm terrain, clutter due to leaves and weeds, and large variability in appearance over the season and across crop types. We address these challenges by building a modular system that leverages machine learning for robust and generalizable perception from monocular RGB images from low-cost cameras, and model predictive control for accurate control in challenging terrain. Our system, CropFollow, is able to autonomously drive 485 meters per intervention on average, outperforming a state-of-the-art LiDAR based system (286 meters per intervention) in extensive field testing spanning over 25 km.

RSS 2...

RSS 2021. Project website with data and videos: https://ansivakumar.github.io/learned-visual-navigation/

Multi-Sensor Fusion based Robust Row Following for Compact Agricultural Robots 2021-06-28
Show

This paper presents a state-of-the-art LiDAR based autonomous navigation system for under-canopy agricultural robots. Under-canopy agricultural navigation has been a challenging problem because GNSS and other positioning sensors are prone to significant errors due to attentuation and multi-path caused by crop leaves and stems. Reactive navigation by detecting crop rows using LiDAR measurements is a better alternative to GPS but suffers from challenges due to occlusion from leaves under the canopy. Our system addresses this challenge by fusing IMU and LiDAR measurements using an Extended Kalman Filter framework on low-cost hardwware. In addition, a local goal generator is introduced to provide locally optimal reference trajectories to the onboard controller. Our system is validated extensively in real-world field environments over a distance of 50.88km on multiple robots in different field conditions across different locations. We report state-of-the-art distance between intervention results, showing that our system is able to safely navigate without interventions for 386.9m on average in fields without significant gaps in the crop rows, 56.1m in production fields and 47.5m in fields with gaps (space of 1~m without plants in both sides of the row).

Automated Agriculture Commodity Price Prediction System with Machine Learning Techniques 2021-06-24
Show

The intention of this research is to study and design an automated agriculture commodity price prediction system with novel machine learning techniques. Due to the increasing large amounts historical data of agricultural commodity prices and the need of performing accurate prediction of price fluctuations, the solution has largely shifted from statistical methods to machine learning area. However, the selection of proper set from historical data for forecasting still has limited consideration. On the other hand, when implementing machine learning techniques, finding a suitable model with optimal parameters for global solution, nonlinearity and avoiding curse of dimensionality are still biggest challenges, therefore machine learning strategies study are needed. In this research, we propose a web-based automated system to predict agriculture commodity price. In the two series experiments, five popular machine learning algorithms, ARIMA, SVR, Prophet, XGBoost and LSTM have been compared with large historical datasets in Malaysia and the most optimal algorithm, LSTM model with an average of 0.304 mean-square error has been selected as the prediction engine of the proposed system.

This ...

This paper has been submitted to Advances in Science, Technology and Engineering Systems Journal

Developing system of wireless sensor network and unmaned aerial vehicle for agriculture inspection 2021-06-20
Show

Agricultural production using high technology is an inevitable trend in Vietnam. Especially for material crops which typically need large growing areas, wireless sensor networks has been clearly playing a significant role in increasing productivity, monitoring pests and diseases, mitigating the impact of climate change, and reducing the direct labor of cultivators. This paper constructs an experimental model of agricultural crop field monitoring using a combination of LoRa wireless sensor networks and unmanned aerial vehicles to collect data on conditions of weather and soil, plant health, which helps growers easily making right decisions on solutions for irrigation, pest treatment, and fertilization with the currently planted crops. The system has been developed and experimentized in the field to evaluate some basic features and justified the stability and reliability of the obtained data.

in Vi...

in Vietnamese language. https://tapchikhcn.haui.edu.vn/media/30/uffile-upload-no-title30450.pdf

Experimental Evaluation of a Hierarchical Operating Framework for Ground Robots in Agriculture 2021-05-23
Show

For mobile robots to be effectively applied to real world unstructured environments -- such as large scale farming -- they require the ability to generate adaptive plans that account both for limited onboard resources, and the presence of dynamic changes, including nearby moving individuals. This work provides a real world empirical evaluation of our proposed hierarchical framework for long-term autonomy of field robots, conducted on University of Sydney's Swagbot agricultural robot platform. We demonstrate the ability of the framework to navigate an unstructured and dynamic environment in an effective manner, validating its use for long-term deployment in large scale farming, for tasks such as autonomous weeding in the presence of moving individuals.

Accep...

Accepted for publication in the 17th International Symposium of Experimental Robotics (ISER 2020), SPAR, Springer Nature

Resource and Response Aware Path Planning for Long-term Autonomy of Ground Robots in Agriculture 2021-05-22
Show

Achieving long-term autonomy for mobile robots operating in real-world unstructured environments such as farms remains a significant challenge. This is made increasingly complex in the presence of moving humans or livestock. These environments require a robot to be adaptive in its immediate plans, accounting for the state of nearby individuals and the response that they might have to the robot's actions. Additionally, in order to achieve longer-term goals, consideration of the limited on-board resources available to the robot is required, especially for extended missions such as weeding an agricultural field. To achieve efficient long-term autonomy, it is thus crucial to understand the impact that online dynamic updates to an energy efficient offline plan might have on resource usage whilst navigating through crowds or herds. To address these challenges, a hierarchical planning framework is proposed, integrating an online local dynamic path planner with an offline longer-term objective-based planner. This framework acts to achieve long-term autonomy through awareness of both dynamic responses of individuals to a robot's motion and the limited resources available. This paper details the hierarchical approach and its integration on a robotic platform, including a comprehensive description of the planning framework and associated perception modules. The approach is evaluated in real-world trials on farms, requiring both consideration of limited battery capacity and the presence of nearby moving individuals. These trials additionally demonstrate the ability of the framework to adapt resource use through variation of the local dynamic planner, allowing adaptive behaviour in changing environments. A summary video is available at https://youtu.be/DGVTrYwJ304.

Accep...

Accepted for publication in Field Robotics

"Connected Researches" in "Smart Lab Bubble": A Lifeline for Commercial Agriculture in "New Normal" 2021-04-29
Show

Research in commercial agriculture is the best strategy that can be adopted by a country to keep on track of the second sustainable goal -- zero hunger by 2030. Analyzing the drawbacks of present research environment and find solutions through digital intervention would be ideal solution to de-isolate the research out come in light of disruptions caused by the Covid pandemic. The performance of the research institutes is not expected to remain the same and would prefer to be stagnated at a lower level. The right evacuation plan that could be worked out by establishing connected research through the digital solution and followed by digitally endorsed performance monitoring and evaluation would be saviour for keeping the research in commercial agriculture live at this pandemic. This paper will discuss what are the problems in carrying out research in commercial agriculture and propose a conceptual model to connect research beyond physical presence by digital transformations in organization design of research institutes in light of Covid-19. Further, digitally endorsed performance measurements and evaluation is envisaged in a digitally empowered connected lab complex -- "Smart Lab Bubble" that is further facilitated through policy measures. The connected lab complex called the "Smart Lab Bubble" concept we present here could be viewed or applied in different perspectives to engineer the real need of the time for the sustainability of research in commercial agriculture. Further, it could be adopted in research in other life science areas.

Evaluating Sensor Data Quality in Internet ofThings Smart Agriculture Applications 2021-04-28
Show

The unprecedented growth of Internet of Things (IoT) and its applications in areas such as Smart Agriculture compels the need to devise newer ways for evaluating the quality of such applications. While existing models for application quality focus on the quality experienced by the end-user (captured using likert scale), IoT applications have minimal human involvement and rely on machine to machine communication and analytics to drive decision via actuations. In this paper, we first present a conceptual framework for the evaluation of IoT application quality. Subsequently, we propose, develop and validate via empirical evaluations a novel model for evaluating sensor data quality that is a key component in assessing IoT application quality. We present an implementation of the sensor data quality model and demonstrate how the IoT sensor data quality can be integrated with a Smart Agriculture application. Results of experimental evaluations conducted using data from a real-world testbed concludes the paper.

Techn...

Technical Report under review with IEEE micro

Terrain assessment for precision agriculture using vehicle dynamic modelling 2021-04-13
Show

Advances in precision agriculture greatly rely on innovative control and sensing technologies that allow service units to increase their level of driving automation while ensuring at the same time high safety standards. This paper deals with automatic terrain estimation and classification that is performed simultaneously by an agricultural vehicle during normal operations. Vehicle mobility and safety, and the successful implementation of important agricultural tasks including seeding, ploughing, fertilising and controlled traffic depend or can be improved by a correct identification of the terrain that is traversed. The novelty of this research lies in that terrain estimation is performed by using not only traditional appearance-based features, that is colour and geometric properties, but also contact-based features, that is measuring physics-based dynamic effects that govern the vehicleeterrain interaction and that greatly affect its mobility. Experimental results obtained from an all-terrain vehicle operating on different surfaces are presented to validate the system in the field. It was shown that a terrain classifier trained with contact features was able to achieve a correct prediction rate of 85.1%, which is comparable or better than that obtained with approaches using traditional feature sets. To further improve the classification performance, all feature sets were merged in an augmented feature space, reaching, for these tests, 89.1% of correct predictions.

Ambient awareness for agricultural robotic vehicles 2021-04-12
Show

In the last few years, robotic technology has been increasingly employed in agriculture to develop intelligent vehicles that can improve productivity and competitiveness. Accurate and robust environmental perception is a critical requirement to address unsolved issues including safe interaction with field workers and animals, obstacle detection in controlled traffic applications, crop row guidance, surveying for variable rate applications, and situation awareness, in general, towards increased process automation. Given the variety of conditions thatmay be encountered in the field, no single sensor exists that can guarantee reliable results in every scenario. The development of a multi-sensory perception systemto increase the ambient awareness of an agricultural vehicle operating in crop fields is the objective of the Ambient Awareness for Autonomous Agricultural Vehicles (QUAD-AV) project. Different onboard sensor technologies, namely stereovision, LIDAR, radar, and thermography, are considered. Novel methods for their combination are proposed to automatically detect obstacles and discern traversable from non-traversable areas. Experimental results, obtained in agricultural contexts, are presented showing the effectiveness of the proposed methods.

An embedded system for the automated generation of labeled plant images to enable machine learning applications in agriculture 2021-04-01
Show

A lack of sufficient training data, both in terms of variety and quantity, is often the bottleneck in the development of machine learning (ML) applications in any domain. For agricultural applications, ML-based models designed to perform tasks such as autonomous plant classification will typically be coupled to just one or perhaps a few plant species. As a consequence, each crop-specific task is very likely to require its own specialized training data, and the question of how to serve this need for data now often overshadows the more routine exercise of actually training such models. To tackle this problem, we have developed an embedded robotic system to automatically generate and label large datasets of plant images for ML applications in agriculture. The system can image plants from virtually any angle, thereby ensuring a wide variety of data; and with an imaging rate of up to one image per second, it can produce lableled datasets on the scale of thousands to tens of thousands of images per day. As such, this system offers an important alternative to time- and cost-intensive methods of manual generation and labeling. Furthermore, the use of a uniform background made of blue keying fabric enables additional image processing techniques such as background replacement and plant segmentation. It also helps in the training process, essentially forcing the model to focus on the plant features and eliminating random correlations. To demonstrate the capabilities of our system, we generated a dataset of over 34,000 labeled images, with which we trained an ML-model to distinguish grasses from non-grasses in test data from a variety of sources. We now plan to generate much larger datasets of Canadian crop plants and weeds that will be made publicly available in the hope of further enabling ML applications in the agriculture sector.

35 pa...

35 pages, 8 figures, Preprint submitted to PLoS One

Blockchain and smart contract for IoT enabled smart agriculture 2021-04-01
Show

The agricultural sector is still lagging behind from all other sectors in terms of using the newest technologies. For production, the latest machines are being introduced and adopted. However, pre-harvest and post-harvest processing are still done by following traditional methodologies while tracing, storing, and publishing agricultural data. As a result, farmers are not getting deserved payment, consumers are not getting enough information before buying their product, and intermediate person/processors are increasing retail prices. Using blockchain, smart contracts, and IoT devices, we can fully automate the process while establishing absolute trust among all these parties. In this research, we explored the different aspects of using blockchain and smart contracts with the integration of IoT devices in pre-harvesting and post-harvesting segments of agriculture. We proposed a system that uses blockchain as the backbone while IoT devices collect data from the field level, and smart contracts regulate the interaction among all these contributing parties. The system implementation has been shown in diagrams and with proper explanations. Gas costs of every operation have also been attached for a better understanding of the costs. We also analyzed the system in terms of challenges and advantages. The overall impact of this research was to show the immutable, available, transparent, and robustly secure characteristics of blockchain in the field of agriculture while also emphasizing the vigorous mechanism that the collaboration of blockchain, smart contract, and IoT presents.

High precision control and deep learning-based corn stand counting algorithms for agricultural robot 2021-03-21
Show

This paper presents high precision control and deep learning-based corn stand counting algorithms for a low-cost, ultra-compact 3D printed and autonomous field robot for agricultural operations. Currently, plant traits, such as emergence rate, biomass, vigor, and stand counting, are measured manually. This is highly labor-intensive and prone to errors. The robot, termed TerraSentia, is designed to automate the measurement of plant traits for efficient phenotyping as an alternative to manual measurements. In this paper, we formulate a Nonlinear Moving Horizon Estimator (NMHE) that identifies key terrain parameters using onboard robot sensors and a learning-based Nonlinear Model Predictive Control (NMPC) that ensures high precision path tracking in the presence of unknown wheel-terrain interaction. Moreover, we develop a machine vision algorithm designed to enable an ultra-compact ground robot to count corn stands by driving through the fields autonomously. The algorithm leverages a deep network to detect corn plants in images, and a visual tracking model to re-identify detected objects at different time steps. We collected data from 53 corn plots in various fields for corn plants around 14 days after emergence (stage V3 - V4). The robot predictions have agreed well with the ground truth with $C_{robot}=1.02 \times C_{human}-0.86$ and a correlation coefficient $R=0.96$. The mean relative error given by the algorithm is $-3.78%$, and the standard deviation is $6.76%$. These results indicate a first and significant step towards autonomous robot-based real-time phenotyping using low-cost, ultra-compact ground robots for corn and potentially other crops.

14 pages, 9 figures
Swarm Robots in Agriculture 2021-03-11
Show

Agricultural mechanization is an area of knowledge that has evolved a lot over the past century, its main actors being agricultural tractors that, in 100 years, have increased their powers by 3,300%. This evolution has resulted in an exponential increase in the field capacity of such machines. However, it has also generated negative results such as excessive consumption of fossil fuel, excessive weight on the soil, very high operating costs, and millionaire acquisition value. This paper aims to present an antiparadigmatic alternative in this area. It is proposing a swarm of small electric robotic tractors that together have the same field capacity as a large tractor with an internal combustion engine. A comparison of costs and field capacity between a 270 kW tractor and a swarm of ten swarm tractors of 24 kW each was carried out. The result demonstrated a wide advantage for the small robot team. It was also proposed the preliminary design of an electric swarm robot tractor. Finally, research challenges were suggested to operationalize such a proposal, calling on the Brazilian Robotics Research Community to elaborate a roadmap for research in the area of swarm robot for mechanized agricultural operations.

Paper...

Paper published in Brazilian Congress of Automatic. Porto Alegre, 2020

Deep learning, machine vision in agriculture in 2021 2021-03-03
Show

Over the past decade, unprecedented progress in the development of neural networks influenced dozens of different industries, including weed recognition in the agro-industrial sector. The use of neural networks in agro-industrial activity in the task of recognizing cultivated crops is a new direction. The absence of any standards significantly complicates the understanding of the real situation of the use of the neural network in the agricultural sector. The manuscript presents the complete analysis of researches over the past 10 years on the use of neural networks for the classification and tracking of weeds due to neural networks. In particular, the analysis of the results of using various neural network algorithms for the task of classification and tracking was presented. As a result, we presented the recommendation for the use of neural networks in the tasks of recognizing a cultivated object and weeds. Using this standard can significantly improve the quality of research on this topic and simplify the analysis and understanding of any paper.

Blockchain in agriculture 2021-02-12
Show

Blockchain is an emerging digital technology allowing ubiquitous financial transactions among distributed untrusted parties, without the need of intermediaries such as banks. This chapter examines the impact of blockchain technology in agriculture and food supply chain, presents existing ongoing projects and initiatives, and discusses overall implications, challenges and potential, with a critical view over the maturity of these projects. Our findings indicate that blockchain is a promising technology towards a transparent supply chain of food, with many ongoing initiatives in various food products and food-related issues, but many barriers and challenges still exist, which hinder its wider popularity among farmers and systems. These challenges involve technical aspects, education, policies and regulatory frameworks.

arXiv...

arXiv admin note: substantial text overlap with arXiv:1908.07391

Anomaly Detection through Transfer Learning in Agriculture and Manufacturing IoT Systems 2021-02-11
Show

IoT systems have been facing increasingly sophisticated technical problems due to the growing complexity of these systems and their fast deployment practices. Consequently, IoT managers have to judiciously detect failures (anomalies) in order to reduce their cyber risk and operational cost. While there is a rich literature on anomaly detection in many IoT-based systems, there is no existing work that documents the use of ML models for anomaly detection in digital agriculture and in smart manufacturing systems. These two application domains pose certain salient technical challenges. In agriculture the data is often sparse, due to the vast areas of farms and the requirement to keep the cost of monitoring low. Second, in both domains, there are multiple types of sensors with varying capabilities and costs. The sensor data characteristics change with the operating point of the environment or machines, such as, the RPM of the motor. The inferencing and the anomaly detection processes therefore have to be calibrated for the operating point. In this paper, we analyze data from sensors deployed in an agricultural farm with data from seven different kinds of sensors, and from an advanced manufacturing testbed with vibration sensors. We evaluate the performance of ARIMA and LSTM models for predicting the time series of sensor data. Then, considering the sparse data from one kind of sensor, we perform transfer learning from a high data rate sensor. We then perform anomaly detection using the predicted sensor data. Taken together, we show how in these two application domains, predictive failure classification can be achieved, thus paving the way for predictive maintenance.

Task Planning on Stochastic Aisle Graphs for Precision Agriculture 2021-02-03
Show

This work addresses task planning under uncertainty for precision agriculture applications whereby task costs are uncertain and the gain of completing a task is proportional to resource consumption (such as water consumption in precision irrigation). The goal is to complete all tasks while prioritizing those that are more urgent, and subject to diverse budget thresholds and stochastic costs for tasks. To describe agriculture-related environments that incorporate stochastic costs to complete tasks, a new Stochastic-Vertex-Cost Aisle Graph (SAG) is introduced. Then, a task allocation algorithm, termed Next-Best-Action Planning (NBA-P), is proposed. NBA-P utilizes the underlying structure enabled by SAG, and tackles the task planning problem by simultaneously determining the optimal tasks to perform and an optimal time to exit (i.e. return to a base station), at run-time. The proposed approach is tested with both simulated data and real-world experimental datasets collected in a commercial vineyard, in both single- and multi-robot scenarios. In all cases, NBA-P outperforms other evaluated methods in terms of return per visited vertex, wasted resources resulting from aborted tasks (i.e. when a budget threshold is exceeded), and total visited vertices.

To ap...

To appear in Robotics and Automation Letters

Transforming India's Agricultural Sector using Ontology-based Tantra Framework 2021-01-26
Show

Food production is a critical activity in which every nation would like to be self-sufficient. India is one of the largest producers of food grains in the world. In India, nearly 70 percent of rural households still depend on agriculture for their livelihood. Keeping farmers happy is particularly important in India as farmers form a large vote bank which politicians dare not disappoint. At the same time, Governments need to balance the interest of farmers with consumers, intermediaries and society at large. The whole agriculture sector is highly information-intensive. Even with enormous collection of data and statistics from different arms of Government, there continue to be information gaps. In this paper we look at how Tantra Social Information Management Framework can help analyze the agricultural sector and transform the same using a holistic approach. Advantage of Tantra Framework approach is that it looks at societal information as a whole without limiting it to only the sector at hand. Tantra Framework makes use of concepts from Zachman Framework to manage aspects of social information through different perspectives and concepts from Unified Foundational Ontology (UFO) to represent interrelationships between aspects. Further, Tantra Framework interoperates with models such as Balanced Scorecard, Theory of Change and Theory of Separations. Finally, we model Indian Agricultural Sector as a business ecosystem and look at approaches to steer transformation from within.

21 pa...

21 pages, 3 figures, 14 Tables. Submitted to International Journal of Sustainable Agricultural Management and Informatics and under review since April 2020

Predicting Illness for a Sustainable Dairy Agriculture: Predicting and Explaining the Onset of Mastitis in Dairy Cows 2021-01-07
Show

Mastitis is a billion dollar health problem for the modern dairy industry, with implications for antibiotic resistance. The use of AI techniques to identify the early onset of this disease, thus has significant implications for the sustainability of this agricultural sector. Current approaches to treating mastitis involve antibiotics and this practice is coming under ever increasing scrutiny. Using machine learning models to identify cows at risk of developing mastitis and applying targeted treatment regimes to only those animals promotes a more sustainable approach. Incorrect predictions from such models, however, can lead to monetary losses, unnecessary use of antibiotics, and even the premature death of animals, so it is important to generate compelling explanations for predictions to build trust with users and to better support their decision making. In this paper we demonstrate a system developed to predict mastitis infections in cows and provide explanations of these predictions using counterfactuals. We demonstrate the system and describe the engagement with farmers undertaken to build it.

A Robust Illumination-Invariant Camera System for Agricultural Applications 2021-01-06
Show

Object detection and semantic segmentation are two of the most widely adopted deep learning algorithms in agricultural applications. One of the major sources of variability in image quality acquired in the outdoors for such tasks is changing lighting condition that can alter the appearance of the objects or the contents of the entire image. While transfer learning and data augmentation to some extent reduce the need for large amount of data to train deep neural networks, the large variety of cultivars and the lack of shared datasets in agriculture makes wide-scale field deployments difficult. In this paper, we present a high throughput robust active lighting-based camera system that generates consistent images in all lighting conditions. We detail experiments that show the consistency in images quality leading to relatively fewer images to train deep neural networks for the task of object detection. We further present results from field experiment under extreme lighting conditions where images without active lighting significantly lack to provide consistent results. The experimental results show that on average, deep nets for object detection trained on consistent data required nearly four times less data to achieve similar level of accuracy. This proposed work could potentially provide pragmatic solutions to computer vision needs in agriculture.

8 Pages, 5 Figures
A Pilot Study of Smart Agricultural Irrigation using Unmanned Aerial Vehicles and IoT-Based Cloud System 2021-01-06
Show

This article introduces a new mobile-based application of modern information and communication technology in agriculture based on Internet of Things (IoT), embedded systems and an unmanned aerial vehicle (UAV). The proposed agricultural monitoring system was designed and implemented using Arduino microcontroller boards, Wi-Fi modules, water pumps and electronic environmental sensors, namely temperature, humidity and soil moisture. The role of UAV in this study is to collect these environmental data from different regions of the farm. Then, the quantity of water irrigation is automatically computed for each region in the cloud. Moreover, the developed system can monitor the farm conditions including the water requirements remotely on Android mobile application to guide the farmers. The results of this study demonstrated that our proposed IoT-based embedded system can be effective to avoid unnecessary and wasted water irrigation within the framework of smart agriculture.

11 pages, 9 figures
39 Hints to Facilitate the Use of Semantics for Data on Agriculture and Nutrition 2020-12-15
Show

In this paper, we report on the outputs and adoption of the Agrisemantics Working Group of the Research Data Alliance (RDA), consisting of a set of recommendations to facilitate the adoption of semantic technologies and methods for the purpose of data interoperability in the field of agriculture and nutrition. From 2016 to 2019, the group gathered researchers and practitioners at the crossing point between information technology and agricultural science, to study all aspects in the life cycle of semantic resources: conceptualization, edition, sharing, standardization, services, alignment, long term support. First, the working group realized a landscape study, a study of the uses of semantics in agrifood, then collected use cases for the exploitation of semantics resources-a generic term to encompass vocabularies, terminologies, thesauri, ontologies. The resulting requirements were synthesized into 39 "hints" for users and developers of semantic resources, and providers of semantic resource services. We believe adopting these recommendations will engage agrifood sciences in a necessary transition to leverage data production, sharing and reuse and the adoption of the FAIR data principles. The paper includes examples of adoption of those requirements, and a discussion of their contribution to the field of data science.

A web-tool for calculating the economic performance of precision agriculture technology 2020-12-09
Show

To develop precision agriculture (PA) to its full potential and make agriculture progress toward sustainability and resilience, appropriate criteria for the economic assessment are recognised as being one of the most significant issues requiring urgent and ongoing attention. In this work, we develop a web-tool supporting the assessment of the net economic benefits of integrating precision farming technologies in different contexts. The methodological approach of the tool is accessible to any agricultural stakeholder through a guided process that allows to evaluate and compare precision agriculture technologies with conventional systems, leading the final user to assess the financial viability and environmental impact resulting from the potential implementation of various precision agriculture technologies in his farm. The web-tool is designed to provide guidelines for farmers over their decisions to invest in selected PA technologies, by increasing the knowledge level about novel technologies characteristics and the related benefits. Possible input reduction also offers the possibility to investigate the mitigation of environmental impacts.

Measuring Bangladeshi Female Farmers' Values for Agriculture Mobile Applications Development 2020-11-22
Show

The ubiquity of mobile applications (apps) in daily life raises the imperative that the apps should reflect users' values. However, users' values are not usually taken into account in app development. Thus there is significant potential for user dissatisfaction and negative socio-economic consequences. To be cognizant of values in apps, the first step is to find out what those values are, and that was the objective of this study conducted in Bangladesh. Our focus was on rural women, specifically female farmers. The basis for our study was Schwartz's universal human values theory, and we used an associated survey instrument, the Portrait Values Questionnaire (PVQ). Our survey of 193 Bangladeshi female farmers showed that Conformity and Security were regarded as the most important values, while Power, Hedonism, and Stimulation were the least important. This finding would be helpful for developers to take into account when developing agriculture apps for this market. In addition, the methodology we used provides a model to follow to elicit the values of apps' users in other communities.

10 Pa...

10 Pages, Accepted to appear in 54th Hawaii International Conference on System Sciences, 2021

OAK: Ontology-Based Knowledge Map Model for Digital Agriculture 2020-11-20
Show

Nowadays, a huge amount of knowledge has been amassed in digital agriculture. This knowledge and know-how information are collected from various sources, hence the question is how to organise this knowledge so that it can be efficiently exploited. Although this knowledge about agriculture practices can be represented using ontology, rule-based expert systems, or knowledge model built from data mining processes, the scalability still remains an open issue. In this study, we propose a knowledge representation model, called an ontology-based knowledge map, which can collect knowledge from different sources, store it, and exploit either directly by stakeholders or as an input to the knowledge discovery process (Data Mining). The proposed model consists of two stages, 1) build an ontology as a knowledge base for a specific domain and data mining concepts, and 2) build the ontology-based knowledge map model for representing and storing the knowledge mined on the crop datasets. A framework of the proposed model has been implemented in agriculture domain. It is an efficient and scalable model, and it can be used as knowledge repository a digital agriculture.

Effects of green revolution led agricultural expansion on net ecosystem service values in India 2020-11-16
Show

Ecosystem Services are a bundle of natural processes and functions that are essential for human well-being, subsistence, and livelihood. The expansion of cultivation and cropland, which is the backbone of the Indian economy, is one of the main drivers of rapid Land Use Land Cover changes in India. To assess the impact of the Green Revolution led agrarian expansion on the total ecosystem service values, we first estimated the ESVs from 1985 to 2005 for eight ecoregions in India using several value transfer approaches. Five explanatory factors such as Total Crop Area, Crop Production, Crop Yield, Net Irrigated Area, and Cropping Intensity representing the cropping scenarios in the country were used in constructing local Geographical Weighted Regression model to explore the cumulative and individual effects on ESVs. A Multi-Layer Perceptron based Artificial Neural Network algorithm was employed to estimate the normalized importance of these explanatory factors. During the observation periods, cropland, forestland, and water bodies have contributed the most and form a significant proportion of ESVs, followed by grassland, mangrove, wetland, and urban builtup. In all three years, among the nine ESs, the highest ESV accounts for water regulation, followed by soil formation and soilwater retention, biodiversity maintenance, waste treatment, climate regulation, and gas regulation. Among the five explanatory factors, TCA, NIA, CP showed a strong positive association with ESVs, while the CI exhibited a negative association. The study reveals a strong association between GR led agricultural expansion and ESVs in India.

SLAM in the Field: An Evaluation of Monocular Mapping and Localization on Challenging Dynamic Agricultural Environment 2020-11-06
Show

This paper demonstrates a system capable of combining a sparse, indirect, monocular visual SLAM, with both offline and real-time Multi-View Stereo (MVS) reconstruction algorithms. This combination overcomes many obstacles encountered by autonomous vehicles or robots employed in agricultural environments, such as overly repetitive patterns, need for very detailed reconstructions, and abrupt movements caused by uneven roads. Furthermore, the use of a monocular SLAM makes our system much easier to integrate with an existing device, as we do not rely on a LiDAR (which is expensive and power consuming), or stereo camera (whose calibration is sensitive to external perturbation e.g. camera being displaced). To the best of our knowledge, this paper presents the first evaluation results for monocular SLAM, and our work further explores unsupervised depth estimation on this specific application scenario by simulating RGB-D SLAM to tackle the scale ambiguity, and shows our approach produces reconstructions that are helpful to various agricultural tasks. Moreover, we highlight that our experiments provide meaningful insight to improve monocular SLAM systems under agricultural settings.

accep...

accepted to WACV 2021, acknowledgment added

iPaaS in Agriculture 4.0: An Industrial Case 2020-10-08
Show

Current automation approaches in the Industry 4.0 have generated increased interest in the utilization of Integration Platforms as a Service (iPaaS) cloud architectures in order to unify and synchronize several systems, applications, and services in order to build smart solutions for automated and adaptive industrial process management. Existing iPaaS solutions present several out-of-the-box connectors and automation engines for easier integration of customers' projects, but show issues regarding overall adaptation outside their scope, brand locking, and occasionally high prices. Moreover, existing platforms fail to respond adequately to the needs of deploying multiple decision models capable of offering automated or semi-automated management of processes, thanks to the integration of the large diversity of data and event sources as well as the different physical or logical action entities. With the popularization of open-source software and applications such as BPM Engines, Machine Learning libraries, and Integration suites and librari

About

This project curates a comprehensive collection of research papers examining the relationship between artificial intelligence and sustainability.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published