Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published Apr 1, 2025 to the GitHub Advisory Database • Updated Apr 11, 2025

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

ppp: Fix KMSAN uninit-value warning with bpf

Syzbot caught an "KMSAN: uninit-value" warning [1], which is caused by the
ppp driver not initializing a 2-byte header when using socket filter.

The following code can generate a PPP filter BPF program:
'''
struct bpf_program fp;
pcap_t *handle;
handle = pcap_open_dead(DLT_PPP_PPPD, 65535);
pcap_compile(handle, &fp, "ip and outbound", 0, 0);
bpf_dump(&fp, 1);
'''
Its output is:
'''
(000) ldh [2]
(001) jeq #0x21 jt 2 jf 5
(002) ldb [0]
(003) jeq #0x1 jt 4 jf 5
(004) ret #65535
(005) ret #0
'''
Wen can find similar code at the following link:
https://github.com/ppp-project/ppp/blob/master/pppd/options.c#L1680
The maintainer of this code repository is also the original maintainer
of the ppp driver.

As you can see the BPF program skips 2 bytes of data and then reads the
'Protocol' field to determine if it's an IP packet. Then it read the first
byte of the first 2 bytes to determine the direction.

The issue is that only the first byte indicating direction is initialized
in current ppp driver code while the second byte is not initialized.

For normal BPF programs generated by libpcap, uninitialized data won't be
used, so it's not a problem. However, for carefully crafted BPF programs,
such as those generated by syzkaller [2], which start reading from offset
0, the uninitialized data will be used and caught by KMSAN.

[1] https://syzkaller.appspot.com/bug?extid=853242d9c9917165d791
[2] https://syzkaller.appspot.com/text?tag=ReproC&x=11994913980000

References

Published by the National Vulnerability Database Apr 1, 2025
Published to the GitHub Advisory Database Apr 1, 2025
Last updated Apr 11, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(6th percentile)

Weaknesses

CVE ID

CVE-2025-21922

GHSA ID

GHSA-6g9c-7jcv-4g45

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.