A comprehensive machine learning system for predicting football match outcomes with automated data collection, advanced modeling, and an interactive visualization dashboard.
Special thanks to the following contributors for their valuable contributions:
- Kartik Vadhawana (GitHub Username: Vkartik-3) - LinkedIn Profile
- Jas Shah (GitHub Username: Arbiter09) - LinkedIn Profile
- Overview
- Features
- System Architecture
- Tech Stack
- Data Pipeline
- Machine Learning Models
- Project Structure
- Installation
- Configuration
- Usage
- API Documentation
- Development Roadmap
- Contributing
- License
The Football Prediction System is an end-to-end machine learning platform that collects, processes, and analyzes football match data to predict match outcomes. The system features automated data collection pipelines, advanced machine learning models, and an interactive dashboard for visualizing predictions and model performance.
Current prediction accuracy stands at 70% with F1 scores of 47.1% (RandomForest) and 52.6% (Ensemble model).
- Multi-source data collection (web scraping, APIs, databases)
- Automated ETL workflows with Apache Airflow
- Comprehensive feature engineering pipeline
- Data validation and quality checks
- Multiple prediction models (RandomForest, XGBoost, Ensemble)
- Model versioning and performance tracking
- Hyperparameter optimization
- Advanced evaluation metrics
- FastAPI backend with RESTful endpoints
- React frontend with responsive design
- Interactive dashboards and visualizations
- Model comparison and performance analysis tools
- Historical performance statistics
- Head-to-head comparisons
- Form analysis and trending metrics
- Fixture difficulty assessment
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Data Sources βββββΆβ Data Pipeline βββββΆβ Feature Store β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β
βΌ
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
β Dashboard ββββββ API Server ββββββ ML Models β
βββββββββββββββββββ βββββββββββββββββββ βββββββββββββββββββ
- Python 3.8+
- FastAPI: Web framework
- SQLAlchemy: ORM for database interactions
- Apache Airflow: Workflow automation
- Pandas/NumPy: Data processing
- Scikit-learn/XGBoost: Machine learning
- Optuna: Hyperparameter optimization
- React: UI library
- TypeScript: Type-safe JavaScript
- Redux: State management
- D3.js/Chart.js: Data visualization
- Tailwind CSS: Styling
- PostgreSQL: Main database
- Redis: Caching
- S3/MinIO: Model artifact storage
- Docker: Containerization
- GitHub Actions: CI/CD (planned)
- ELK Stack: Monitoring (planned)
The data pipeline is built using Apache Airflow to automate the collection, processing, and storage of football match data:
-
Data Collection
- Web scraping from multiple sources (FBref, Transfermarkt, WhoScored)
- API integrations for odds, weather, and supplementary data
- Historical database queries
-
Data Processing
- Cleaning and normalization
- Feature engineering
- Data validation and quality control
-
Feature Generation
- Team performance metrics (form, streaks, goals)
- Head-to-head statistics
- Match context features (timing, weather, location)
- Advanced metrics (xG, PPDA, pressure metrics)
-
Storage
- Raw data in file storage
- Processed data in PostgreSQL database
- Feature store for model training
- RandomForest: Base model with core features (~47.1% F1)
- XGBoost: Gradient boosting implementation
- Ensemble: Weighted combination of models (~52.6% F1)
- Stacked Ensemble: Neural network meta-learner on top of base models
- Deep Learning: LSTM/Transformer networks for sequence modeling
- Feature Selection: Automated feature importance analysis
- AutoML: Automatic model selection and optimization
The system implements a comprehensive model versioning system that tracks:
- Training data snapshot
- Hyperparameters
- Feature set
- Performance metrics
- Timestamps
football_prediction_system/
βββ data_pipeline/ # Data collection and ETL processes
β βββ airflow/ # Airflow DAGs and plugins
β βββ collectors/ # Data collection modules
β βββ processors/ # Data processing logic
βββ app/ # Web application
β βββ api/ # FastAPI backend
β β βββ models/ # Database models
β β βββ routers/ # API endpoints
β β βββ services/ # Business logic
β βββ frontend/ # React frontend
β βββ components/ # UI components
β βββ pages/ # Application pages
β βββ services/ # API clients
βββ ml/ # Machine learning
β βββ models/ # Model definitions
β βββ features/ # Feature engineering
β βββ training/ # Training scripts
β βββ evaluation/ # Model evaluation
βββ database/ # Database migrations and scripts
βββ tests/ # Test suite
βββ configs/ # Configuration files
βββ scripts/ # Utility scripts
- Python 3.8+
- Node.js 14+
- PostgreSQL 12+
- Docker and Docker Compose (optional)
git clone https://github.com/yourusername/football-prediction-system.git
cd football-prediction-system
# Create a virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
# Set up the database
python -m scripts.setup_db
# Run database migrations
alembic upgrade head
cd app/frontend
npm install
# Set Airflow home directory
export AIRFLOW_HOME=$(pwd)/data_pipeline/airflow
# Initialize the database
airflow db init
# Create an admin user
airflow users create \
--username admin \
--firstname Admin \
--lastname User \
--role Admin \
--email [email protected] \
--password admin
# Start the webserver and scheduler
airflow webserver --port 8080 &
airflow scheduler &
Configuration files are stored in the configs
directory. Copy the example configs and modify as needed:
cp configs/app.example.yaml configs/app.yaml
cp configs/db.example.yaml configs/db.yaml
cp configs/airflow.example.yaml configs/airflow.yaml
Key configuration parameters:
- Database connection strings
- API keys for data sources
- Model hyperparameters
- Logging settings
- Airflow settings
cd app
uvicorn api.main:app --reload
cd app/frontend
npm start
- Frontend: http://localhost:3000
- API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
- Airflow: http://localhost:8080
# Train a specific model
python -m ml.training.train --model random_forest
# Train all models
python -m ml.training.train --all
# Generate predictions for upcoming matches
python -m ml.predict --upcoming
# Test model on historical data
python -m ml.evaluate --model ensemble --test-set recent
The API documentation is automatically generated using Swagger UI and can be accessed at /docs
endpoint when the API server is running.
Endpoint | Method | Description |
---|---|---|
/api/v1/matches |
GET | List matches with filtering options |
/api/v1/predictions |
GET | Get predictions for matches |
/api/v1/teams/{team_id} |
GET | Get team information |
/api/v1/models |
GET | List available models |
/api/v1/models/{model_id}/metrics |
GET | Get model performance metrics |
/api/v1/head-to-head/{team1_id}/{team2_id} |
GET | Get head-to-head statistics |
- Implement stacked ensemble with neural network
- Optimize hyperparameters with Optuna
- Add player-level features
- Fix Airflow configuration issues
- Implement WebSockets for live updates
- Create real-time prediction updates
- Set up prediction change alerts
- Develop live visualization components
- Add computer vision for tactical analysis
- Implement NLP for news/social media
- Develop player performance metrics
- Create natural language match reports
- Build formation simulation tools
- Implement what-if scenarios
- Create tactical pattern recognition
- Develop match simulation
- Set up CI/CD with GitHub Actions
- Containerize application with Docker
- Implement database optimization
- Set up monitoring with ELK stack
Contributions are welcome! Please feel free to submit a Pull Request.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
This project is licensed under the MIT License - see the LICENSE file for details.