-
Notifications
You must be signed in to change notification settings - Fork 78
add Killer E2400 ID in alx driver #34
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
Thank you for being so active in your Linux development. I'm sure Valve devs can merge this soon enough |
johnv-valve
added a commit
to johnv-valve/steamos_kernel
that referenced
this issue
Nov 25, 2015
Patch from Owen Lin [email protected] Fixes ValveSoftware#34
Plagman
pushed a commit
that referenced
this issue
Aug 15, 2016
[ Upstream commit f377554 ] The tracepoint infrastructure uses RCU sched protection to enable and disable tracepoints safely. There are some instances where tracepoints are used in infrastructure code (like kfree()) that get called after a CPU is going offline, and perhaps when it is coming back online but hasn't been registered yet. This can probuce the following warning: [ INFO: suspicious RCU usage. ] 4.4.0-00006-g0fe53e8-dirty #34 Tainted: G S ------------------------------- include/trace/events/kmem.h:141 suspicious rcu_dereference_check() usage! other info that might help us debug this: RCU used illegally from offline CPU! rcu_scheduler_active = 1, debug_locks = 1 no locks held by swapper/8/0. stack backtrace: CPU: 8 PID: 0 Comm: swapper/8 Tainted: G S 4.4.0-00006-g0fe53e8-dirty #34 Call Trace: [c0000005b76c78d0] [c0000000008b9540] .dump_stack+0x98/0xd4 (unreliable) [c0000005b76c7950] [c00000000010c898] .lockdep_rcu_suspicious+0x108/0x170 [c0000005b76c79e0] [c00000000029adc0] .kfree+0x390/0x440 [c0000005b76c7a80] [c000000000055f74] .destroy_context+0x44/0x100 [c0000005b76c7b00] [c0000000000934a0] .__mmdrop+0x60/0x150 [c0000005b76c7b90] [c0000000000e3ff0] .idle_task_exit+0x130/0x140 [c0000005b76c7c20] [c000000000075804] .pseries_mach_cpu_die+0x64/0x310 [c0000005b76c7cd0] [c000000000043e7c] .cpu_die+0x3c/0x60 [c0000005b76c7d40] [c0000000000188d8] .arch_cpu_idle_dead+0x28/0x40 [c0000005b76c7db0] [c000000000101e6c] .cpu_startup_entry+0x50c/0x560 [c0000005b76c7ed0] [c000000000043bd8] .start_secondary+0x328/0x360 [c0000005b76c7f90] [c000000000008a6c] start_secondary_prolog+0x10/0x14 This warning is not a false positive either. RCU is not protecting code that is being executed while the CPU is offline. Instead of playing "whack-a-mole(TM)" and adding conditional statements to the tracepoints we find that are used in this instance, simply add a cpu_online() test to the tracepoint code where the tracepoint will be ignored if the CPU is offline. Use of raw_smp_processor_id() is fine, as there should never be a case where the tracepoint code goes from running on a CPU that is online and suddenly gets migrated to a CPU that is offline. Link: http://lkml.kernel.org/r/[email protected] Reported-by: Denis Kirjanov <[email protected]> Fixes: 97e1c18 ("tracing: Kernel Tracepoints") Cc: [email protected] # v2.6.28+ Signed-off-by: Steven Rostedt <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Plagman
pushed a commit
that referenced
this issue
Aug 15, 2016
[ Upstream commit 7cafc0b ] We must handle data access exception as well as memory address unaligned exceptions from return from trap window fill faults, not just normal TLB misses. Otherwise we can get an OOPS that looks like this: ld-linux.so.2(36808): Kernel bad sw trap 5 [#1] CPU: 1 PID: 36808 Comm: ld-linux.so.2 Not tainted 4.6.0 #34 task: fff8000303be5c60 ti: fff8000301344000 task.ti: fff8000301344000 TSTATE: 0000004410001601 TPC: 0000000000a1a784 TNPC: 0000000000a1a788 Y: 00000002 Not tainted TPC: <do_sparc64_fault+0x5c4/0x700> g0: fff8000024fc8248 g1: 0000000000db04dc g2: 0000000000000000 g3: 0000000000000001 g4: fff8000303be5c60 g5: fff800030e672000 g6: fff8000301344000 g7: 0000000000000001 o0: 0000000000b95ee8 o1: 000000000000012b o2: 0000000000000000 o3: 0000000200b9b358 o4: 0000000000000000 o5: fff8000301344040 sp: fff80003013475c1 ret_pc: 0000000000a1a77c RPC: <do_sparc64_fault+0x5bc/0x700> l0: 00000000000007ff l1: 0000000000000000 l2: 000000000000005f l3: 0000000000000000 l4: fff8000301347e98 l5: fff8000024ff3060 l6: 0000000000000000 l7: 0000000000000000 i0: fff8000301347f60 i1: 0000000000102400 i2: 0000000000000000 i3: 0000000000000000 i4: 0000000000000000 i5: 0000000000000000 i6: fff80003013476a1 i7: 0000000000404d4c I7: <user_rtt_fill_fixup+0x6c/0x7c> Call Trace: [0000000000404d4c] user_rtt_fill_fixup+0x6c/0x7c The window trap handlers are slightly clever, the trap table entries for them are composed of two pieces of code. First comes the code that actually performs the window fill or spill trap handling, and then there are three instructions at the end which are for exception processing. The userland register window fill handler is: add %sp, STACK_BIAS + 0x00, %g1; \ ldxa [%g1 + %g0] ASI, %l0; \ mov 0x08, %g2; \ mov 0x10, %g3; \ ldxa [%g1 + %g2] ASI, %l1; \ mov 0x18, %g5; \ ldxa [%g1 + %g3] ASI, %l2; \ ldxa [%g1 + %g5] ASI, %l3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %l4; \ ldxa [%g1 + %g2] ASI, %l5; \ ldxa [%g1 + %g3] ASI, %l6; \ ldxa [%g1 + %g5] ASI, %l7; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i0; \ ldxa [%g1 + %g2] ASI, %i1; \ ldxa [%g1 + %g3] ASI, %i2; \ ldxa [%g1 + %g5] ASI, %i3; \ add %g1, 0x20, %g1; \ ldxa [%g1 + %g0] ASI, %i4; \ ldxa [%g1 + %g2] ASI, %i5; \ ldxa [%g1 + %g3] ASI, %i6; \ ldxa [%g1 + %g5] ASI, %i7; \ restored; \ retry; nop; nop; nop; nop; \ b,a,pt %xcc, fill_fixup_dax; \ b,a,pt %xcc, fill_fixup_mna; \ b,a,pt %xcc, fill_fixup; And the way this works is that if any of those memory accesses generate an exception, the exception handler can revector to one of those final three branch instructions depending upon which kind of exception the memory access took. In this way, the fault handler doesn't have to know if it was a spill or a fill that it's handling the fault for. It just always branches to the last instruction in the parent trap's handler. For example, for a regular fault, the code goes: winfix_trampoline: rdpr %tpc, %g3 or %g3, 0x7c, %g3 wrpr %g3, %tnpc done All window trap handlers are 0x80 aligned, so if we "or" 0x7c into the trap time program counter, we'll get that final instruction in the trap handler. On return from trap, we have to pull the register window in but we do this by hand instead of just executing a "restore" instruction for several reasons. The largest being that from Niagara and onward we simply don't have enough levels in the trap stack to fully resolve all possible exception cases of a window fault when we are already at trap level 1 (which we enter to get ready to return from the original trap). This is executed inline via the FILL_*_RTRAP handlers. rtrap_64.S's code branches directly to these to do the window fill by hand if necessary. Now if you look at them, we'll see at the end: ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; ba,a,pt %xcc, user_rtt_fill_fixup; And oops, all three cases are handled like a fault. This doesn't work because each of these trap types (data access exception, memory address unaligned, and faults) store their auxiliary info in different registers to pass on to the C handler which does the real work. So in the case where the stack was unaligned, the unaligned trap handler sets up the arg registers one way, and then we branched to the fault handler which expects them setup another way. So the FAULT_TYPE_* value ends up basically being garbage, and randomly would generate the backtrace seen above. Reported-by: Nick Alcock <[email protected]> Signed-off-by: David S. Miller <[email protected]> Signed-off-by: Sasha Levin <[email protected]>
Plagman
pushed a commit
that referenced
this issue
Aug 15, 2016
Patch from Owen Lin [email protected] Fixes #34
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
I work for Rivet networks whom develops and distributes the Killer Networking products. We are working to upstream this change to mainline linux Kernel, but in the meantime can we have this patched in SteamOS Kernel also?
Add Killer E2400 device ID in alx driver.
Signed-off-by: Owen Lin [email protected]
diff -uprN alx_orig/main.c alx/main.c
--- alx_orig/main.c Mon Sep 7 13:00:58 2015
+++ alx/main.c Mon Sep 7 14:47:03 2015
@@ -1537,6 +1537,7 @@ static const struct pci_device_id alx_pc
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8162),
.driver_data = ALX_DEV_QUIRK_MSI_INTX_DISABLE_BUG },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8171) },
{ PCI_VDEVICE(ATTANSIC, ALX_DEV_ID_AR8172) },
{}
};
diff -uprN alx_orig/reg.h alx/reg.h
--- alx_orig/reg.h Mon Sep 7 13:00:58 2015
+++ alx/reg.h Mon Sep 7 14:46:16 2015
@@ -39,6 +39,7 @@
define ALX_DEV_ID_E2200 0xe091
define ALX_DEV_ID_AR8162 0x1090
define ALX_DEV_ID_AR8171 0x10A1
+#define ALX_DEV_ID_E2400 0xe0A1
define ALX_DEV_ID_AR8172 0x10A0
/* rev definition,
The text was updated successfully, but these errors were encountered: