Skip to content
/ ndonnx Public

ONNX-backed array library that is compliant with the Array API standard.

License

Notifications You must be signed in to change notification settings

Quantco/ndonnx

Folders and files

NameName
Last commit message
Last commit date

Latest commit

dfa8e02 · Apr 11, 2025

History

93 Commits
Apr 1, 2025
Apr 1, 2025
Apr 1, 2025
Apr 11, 2025
Apr 11, 2025
Jun 11, 2024
Jun 11, 2024
Mar 13, 2025
Jan 31, 2025
Jun 11, 2024
Jun 11, 2024
Jun 15, 2024
Apr 11, 2025
Jun 11, 2024
Apr 1, 2025
Apr 7, 2025
Apr 1, 2025
Apr 11, 2025
Apr 1, 2025

Repository files navigation

ndonnx

CI Documentation conda-forge pypi

An ONNX-backed array library that is compliant with the Array API standard.

Installation

Releases are available on PyPI and conda-forge.

# using pip
pip install ndonnx
# using conda
conda install ndonnx
# using pixi
pixi add ndonnx

Development

You can install the package in development mode using:

git clone https://github.com/quantco/ndonnx
cd ndonnx

# For Array API tests
git submodule update --init --recursive

pixi shell
pre-commit run -a
pip install --no-build-isolation --no-deps -e .
pytest tests -n auto

Quick start

ndonnx is an ONNX based python array library.

It has a couple of key features:

  • It implements the Array API standard. Standard compliant code can be executed without changes across numerous backends such as like NumPy, JAX and now ndonnx.

    import numpy as np
    import ndonnx as ndx
    import jax.numpy as jnp
    
    def mean_drop_outliers(a, low=-5, high=5):
        xp = a.__array_namespace__()
        return xp.mean(a[(low < a) & (a < high)])
    
    np_result = mean_drop_outliers(np.asarray([-10, 0.5, 1, 5]))
    jax_result = mean_drop_outliers(jnp.asarray([-10, 0.5, 1, 5]))
    onnx_result = mean_drop_outliers(ndx.asarray([-10, 0.5, 1, 5]))
    
    assert np_result == onnx_result.to_numpy() == jax_result == 0.75
  • It supports ONNX export. This allows you persist your logic into an ONNX computation graph.

    import ndonnx as ndx
    import onnx
    
    # Instantiate placeholder ndonnx array
    x = ndx.array(shape=("N",), dtype=ndx.float32)
    y = mean_drop_outliers(x)
    
    # Build and save ONNX model to disk
    model = ndx.build({"x": x}, {"y": y})
    onnx.save(model, "mean_drop_outliers.onnx")

    You can then make predictions using a runtime of your choice.

    import onnxruntime as ort
    import numpy as np
    
    inference_session = ort.InferenceSession("mean_drop_outliers.onnx")
    prediction, = inference_session.run(None, {
        "x": np.array([-10, 0.5, 1, 5], dtype=np.float32),
    })
    assert prediction == 0.75

In the future we will be enabling a stable API for an extensible data type system. This will allow users to define their own data types and operations on arrays with these data types.

Array API coverage

Array API compatibility tested against the official array-api-tests suite. Missing coverage is tracked in the skips.txt file. Contributions are welcome!

Run the tests with:

pixi run arrayapitests