Skip to content

[do not merge] pulling out masking and adding test #69

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -300,18 +300,46 @@ def process_item(
token_ids, max_len, tokenizer.token_to_id(tokenizer.pad_token), sample=False
)

token_ids, mask, attention_mask, labels = apply_masking(
token_ids,
mask_prob,
mask_token_prob,
random_token_prob,
prepend_cls_token,
tokenizer.pad_id,
tokenizer.token_to_id(tokenizer.cls_token),
tokenizer.token_to_id(tokenizer.mask_token),
len(tokenizer.vocab) - 5,
)

# NeMo megatron assumes this return structure.
item = {
"text": token_ids.astype(np.int64),
"types": np.zeros_like(token_ids).astype(np.int64),
"attention_mask": attention_mask.astype(np.int64),
"labels": labels.astype(np.int64),
"loss_mask": mask,
"is_random": np.zeros_like(token_ids).astype(np.int64),
}

return item


def apply_masking(
token_ids, mask_prob, mask_token_prob, random_token_prob, prepend_cls_token, pad_id, cls_id, mask_id, num_tokens
):
mask = None
mask_tokens_positions = None
random_tokens_positions = None

# - masked tokens
if mask_prob > 0.0:
probs = np.full(token_ids.shape[0], mask_prob)
probs[token_ids == tokenizer.token_to_id(tokenizer.pad_token)] = 0.0
probs[token_ids == pad_id] = 0.0
mask = np.random.binomial(1, probs).astype(bool)
mask_tokens_positions = mask & np.random.binomial(1, mask_token_prob, mask.shape).astype(bool)
random_tokens_positions = (
mask & np.random.binomial(1, random_token_prob, mask.shape).astype(bool) & (~mask_tokens_positions)
random_tokens_positions = (mask & np.random.binomial(1, random_token_prob, mask.shape).astype(bool)) & (
~mask_tokens_positions
)
# - ensure [CLS] token is masked from the loss. Note that we're dealing with 1d arrays so flattening isn't a problem here.
if prepend_cls_token:
Expand All @@ -321,8 +349,8 @@ def process_item(

# - add [CLS] token, note that token_ids is a 1d array so flattening isn't a problem here.
if prepend_cls_token:
token_ids = np.insert(token_ids, 0, tokenizer.token_to_id(tokenizer.cls_token))
attention_mask = token_ids != tokenizer.token_to_id(tokenizer.pad_token)
token_ids = np.insert(token_ids, 0, cls_id)
attention_mask = token_ids != pad_id

labels = np.ones(len(token_ids)) * -1

Expand All @@ -339,19 +367,8 @@ def process_item(
if random_tokens_positions is None:
random_tokens_positions = np.zeros_like(mask)
# identity_tokens = mask & (~mask_tokens_positions) & (~random_tokens_positions), not needed because
token_ids[mask_tokens_positions] = tokenizer.token_to_id(tokenizer.mask_token)
token_ids[mask_tokens_positions] = mask_id
# There are 5 special tokens in the tokenizer, so we start from 5. TODO make this a parameter of the tokenizer.
if random_tokens_positions.sum() > 0:
token_ids[random_tokens_positions] = np.random.randint(5, len(tokenizer.vocab), random_tokens_positions.sum())

# NeMo megatron assumes this return structure.
item = {
"text": token_ids.astype(np.int64),
"types": np.zeros_like(token_ids).astype(np.int64),
"attention_mask": attention_mask.astype(np.int64),
"labels": labels.astype(np.int64),
"loss_mask": mask,
"is_random": np.zeros_like(token_ids).astype(np.int64),
}

return item
token_ids[random_tokens_positions] = np.random.randint(5, num_tokens + 5, random_tokens_positions.sum())
return token_ids, mask, attention_mask, labels
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# SPDX-FileCopyrightText: Copyright (c) 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-Apache2
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import pytest

from bionemo.geneformer.data.singlecell.dataset import apply_masking


def test_masking_gives_expected_ratios():
token_ids = np.ones(100_000, dtype=np.int64)

masked_token_ids, loss_mask, _, _ = apply_masking(
token_ids,
mask_prob=0.5,
mask_token_prob=0.25,
random_token_prob=0.12,
prepend_cls_token=True,
pad_id=0,
cls_id=5,
mask_id=2,
num_tokens=2,
)

assert len(masked_token_ids) == 100_001
masked_token_ids = masked_token_ids[1:]

# Check that overall masking probability is correct.
assert pytest.approx(loss_mask.mean(), abs=0.01) == 0.5

# Check that the distribution of masked tokens is correct.
assert pytest.approx((masked_token_ids == 2).mean(), abs=0.01) == 0.5 * 0.25

# Check that the distribution of random tokens is correct.
assert pytest.approx(((masked_token_ids == 5) | (masked_token_ids == 6)).mean(), abs=0.01) == 0.5 * 0.12
Copy link
Collaborator Author

@pstjohn pstjohn Aug 2, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this test fails for me, but the original model test still passes. This probably explains why I can't get the same loss in #55

        # Check that the distribution of random tokens is correct.
>       assert pytest.approx(((masked_token_ids == 5) | (masked_token_ids == 6)).mean(), abs=0.01) == 0.5 * 0.12
E       assert 0.04529 ± 1.0e-02 == 0.06
E         
E         comparison failed
E         Obtained: 0.06
E         Expected: 0.04529 ± 1.0e-02

I suspect there might be something wrong with the logic on this line?
https://github.com/NVIDIA/bionemo-fw-ea/blob/21aa22f4437a460224dfec0ed308a910539857df/sub-packages/bionemo-geneformer/src/bionemo/geneformer/data/singlecell/dataset.py#L313-L315

Copy link
Collaborator

@jstjohn jstjohn Aug 2, 2024

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yup. definitely not right. So per our slack convo just go ahead and fix this stuff, but for the geneformer test the loss on that will be worse after the change with the current 80/10/10 settings. Before you change the target, verify that the rate the model was unintentionally trained with, 80/2/18, produces the same-ish result as before.

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

let's make sure we can set these rates so that as we are doing replication tests we can use the 80/2/18 mix. At some point we should do a head to head on 80/10/10 vs 80/2/18, until then we know we can get good models out of 80/2/18 that are better than the published geneformer at some tasks at least, so that may be a good default for now for Geneformer until we nail down the answer to this head to head mixing question.


# Check that the distribution of unmasked tokens is correct.
assert pytest.approx((masked_token_ids[loss_mask] == 1).mean(), abs=0.01) == 1.0 - (0.25 + 0.12)
Loading