Skip to content

Mindful-AI-Assistants/No-SQL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation


πŸ›’οΈ NoSQL: Building Databases in Practice



Sponsor Mindful AI Assistants


Automation Workflow


Developed during the 3rd semester of the Data Science and Humanistic Artificial Intelligence undergraduate program at PUC-SP (2025)

Under the guidance of Professor Doctor Daniel Gatti.


Online Tools

➒➣ Oracle SQL LIVE

➣➒ BRM Model Web

➣➒ Redis Database

➣➒ Kepler Geolocation

➣➒ Mermaid FlowChart and Diagrams


Dowloaded Tools

➣➒ PostgreSQL

➣➒ MongoDB


Books


πŸ“– Overview

This project explores the fundamentals and practical applications of NoSQL (Not Only SQL) databases, showcasing the construction and management of databases using various database systems, including:


➒ MySQL - Certificate
➒ SQL Server - Certificate
➒ T-SQL - Certificate
➒ Redis MongoDB - Certificate
➒ SQL on Linux - Certificate
➒ Oracle - Certificate


Through this comprehensive guide, you will understand how to define, manipulate, and query data using SQL and NoSQL techniques, alongside practical examples.


Entity Relationship Conceptual Modeling

➒ WorKClass Example


πŸ—„οΈ SQL Language Breakdown


The SQL language is divided into three main components:

  1. Data Definition Language (DDL)
    • Defines database schema and structures.
    • Examples: CREATE TABLE, ALTER TABLE, DROP TABLE.

  1. Data Manipulation Language (DML)
    • Manages data within schema objects.
    • Examples: INSERT, UPDATE, DELETE.

  1. Data Query Language (DQL)
    • Retrieves data from databases.
    • Example: SELECT.

✍️ Practical Examples

πŸ“‹ DDL – Data Definition Language

select*from HR. COUNTRIES
select COUNTRY_NAME from HR.COUNTRIES 
select COUNTRY_ID from HR.COUNTRIES 
select REGION_ID from HR.COUNTRIES 
select*from hr.REGIONS
SELECT country_id, country_name, region_name
FROM HR.COUNTRIES, HR.REGIONS
Where hr.COUNTRIES.region_id = HR.regions.REGION_ID

CREATE TABLE Person (
    ID INT PRIMARY KEY,
    Name VARCHAR(100) NOT NULL,
    Age INT,
    Email VARCHAR(150) UNIQUE
);

ALTER TABLE Person ADD Telefone VARCHAR(15);

DROP TABLE Person;

πŸ› οΈ DML – Data Manipulation Language


INSERT INTO Person (ID, Name, Age, Email)
VALUES (1, 'Maria Silva', 30, '[email protected]');

UPDATE Person
SET Age = 31
WHERE ID = 1;

πŸ” DQL – Data Query Language


SELECT Name, Email
FROM Person
WHERE Age > 25;

βš™οΈ Advanced SQL Concepts

CREATE TABLE Sale (
NumCliente INT NOT NULL IDENTITY(1,1),
CPF INT NOT NULL,
CONSTRAINT pkClient PRIMARY KEY (NumClient))

ALTER TABLE Person
ADD CONSTRAINT ckIdade CHECK (Age <= 100);

CREATE TABLE Produtos (
    ProdutoID INT IDENTITY(1,1) PRIMARY KEY,
    NomeProduto VARCHAR(100) NOT NULL
);

πŸƒ NoSQL – MongoDB Example

// Inserting a single document
db.usuarios.insertOne({
    name: "JoΓ£o Silva",
    age: 28,
    email: "[email protected]"
});

// Inserting multiple documents
db.usuarios.insertMany([
    { name: "Ana Souza", age: 24, email: "[email protected]" },
    { name: "Carlos Lima", age: 35, email: "[email protected]" }
]);

// Find users older than 25
db.usuarios.find({ age: { $gt: 25 } });

// Find user by email
db.usuarios.findOne({ email: "[email protected]" });

// Update user age
db.usuarios.updateOne(
    { name: "JoΓ£o Silva" },
    { $set: { idade: 29 } }
);

// Delete user
db.usuarios.deleteOne({ name: "Carlos Lima" });

πŸ™Œ Acknowledgements

Special thanks to Professor Daniel Gatti for guidance throughout this project.


Feel Free to Reach Out:

πŸ’Œ Email Me


πŸ›ΈΰΉ‹ My Contacts Hub




────────────── βŠΉπŸ”­ΰΉ‹ ──────────────

➣➒➀ Back to Top

Copyright 2025 Mindful-AI-Assistants. Code released under the MIT license.