Skip to content

JoshuaLPF/TwinsTNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 

Repository files navigation

TwinsTNet -- TIP 2025

The code is coming soon!

  • Please cite our paper if you find it useful for your research.
@ARTICLE{10982382,
  author={Lyu, Pengfei and Yu, Xiaosheng and Chi, Jianning and Wu, Hao and Wu, Chengdong and Rajapakse, Jagath C.},
  journal={IEEE Transactions on Image Processing}, 
  title={TwinsTNet: Broad-View Twins Transformer Network for Bi-Modal Salient Object Detection}, 
  year={2025},
  volume={34},
  number={},
  pages={2796-2810},
  publisher={IEEE}
}

Requirement

  • Python (3.7.10+), Pytorch (1.7.0+), Cuda, Torchvision, Tensorboard, TensorboardX, Numpy.

Datasets

Pre-trained models

  • RGB-T:
  • Baidu cloud disk link, fetch code (u9dh)
  • RGB-D:
  • Training on NLPR and NJUD, Baidu cloud disk link, fetch code (putl)
  • Training on NLPR, NJUD and DUT-RGBD, Baidu cloud disk link, fetch code (rlex)

Results

  • RGB-T: The RGB-T results can be downloaded here.
Em Sm wF Fm MAE
VT821 0.940 0.911 0.865 0.869 0.023
VT1000 0.954 0.943 0.922 0.913 0.015
VT5000 0.950 0.912 0.874 0.880 0.023
VI-RGBT1500 0.956 0.909 0.880 0.895 0.028
  • RGB-D: The RGB-D results will be available soon.
Em Sm wF Fm MAE
NLPR 0.976 0.941 0.922 0.922 0.016
NJUD 0.940 0.934 0.925 0.935 0.026
DUT-RGBD 0.973 0.948 0.946 0.956 0.018
SIP 0.949 0.915 0.907 0.926 0.034
STERE 0.945 0.925 0.905 0.913 0.029
ReDWeb 0.780 0.756 0.696 0.728 0.109

Evaluation Metrics Toolbox

  • The Evaluation Metrics Toolbox is available here.

Acknowledgements

  • Thanks to all the seniors who put in the effort.

Contact Us

If you have any questions, please contact us ([email protected]).

About

(TIP2025) TwinsTNet: Broad-View Twins Transformer Network for Bi-Modal Salient Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published