The code is coming soon!
- Please cite our paper if you find it useful for your research.
@ARTICLE{10982382,
author={Lyu, Pengfei and Yu, Xiaosheng and Chi, Jianning and Wu, Hao and Wu, Chengdong and Rajapakse, Jagath C.},
journal={IEEE Transactions on Image Processing},
title={TwinsTNet: Broad-View Twins Transformer Network for Bi-Modal Salient Object Detection},
year={2025},
volume={34},
number={},
pages={2796-2810},
publisher={IEEE}
}
- Python (3.7.10+), Pytorch (1.7.0+), Cuda, Torchvision, Tensorboard, TensorboardX, Numpy.
- RGB-T Datasets: VT821, VT1000, VT5000,, VI-RGBT1500
- RGB-D Datasets: NLPR, NJUD, DUT-RGBD, STERE, SIP, ReDWeb-S.
- RGB-T:
- Baidu cloud disk link, fetch code (u9dh)
- RGB-D:
- Training on NLPR and NJUD, Baidu cloud disk link, fetch code (putl)
- Training on NLPR, NJUD and DUT-RGBD, Baidu cloud disk link, fetch code (rlex)
- RGB-T: The RGB-T results can be downloaded here.
Em | Sm | wF | Fm | MAE | |
---|---|---|---|---|---|
VT821 | 0.940 | 0.911 | 0.865 | 0.869 | 0.023 |
VT1000 | 0.954 | 0.943 | 0.922 | 0.913 | 0.015 |
VT5000 | 0.950 | 0.912 | 0.874 | 0.880 | 0.023 |
VI-RGBT1500 | 0.956 | 0.909 | 0.880 | 0.895 | 0.028 |
- RGB-D: The RGB-D results will be available soon.
Em | Sm | wF | Fm | MAE | |
---|---|---|---|---|---|
NLPR | 0.976 | 0.941 | 0.922 | 0.922 | 0.016 |
NJUD | 0.940 | 0.934 | 0.925 | 0.935 | 0.026 |
DUT-RGBD | 0.973 | 0.948 | 0.946 | 0.956 | 0.018 |
SIP | 0.949 | 0.915 | 0.907 | 0.926 | 0.034 |
STERE | 0.945 | 0.925 | 0.905 | 0.913 | 0.029 |
ReDWeb | 0.780 | 0.756 | 0.696 | 0.728 | 0.109 |
- The Evaluation Metrics Toolbox is available here.
- Thanks to all the seniors who put in the effort.
If you have any questions, please contact us ([email protected]).