forked from goncabakar/GMVAE-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
184 lines (157 loc) · 7.12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import argparse
import torch
import numpy as np
from utils import *
from model import *
import matplotlib
matplotlib.use('agg')
from matplotlib import pyplot as plt
def train(train_data, train_labels, model, optimizer):
model.train()
train_loss = 0
l1 = 0
l2 = 0
l3 = 0
l4 = 0
for batch_idx, y in enumerate(train_data):
y = y.float()
y = y.to(device)
y = y.view(-1,1)
train_labels = train_labels.float()
train_labels = train_labels.to(device)
labels = train_labels[batch_idx, :].view(-1,1)
optimizer.zero_grad()
l1, l2, l3, l4, total_loss, accuracy = model.loss_function(y, labels)
total_loss.backward()
train_loss += total_loss#.item()
l1 += l1
l2 += l2
l3 += l3
l4 += l4
optimizer.step()
print("avg l1: {}".format(l1.item()/ train_data.size()[0]))
print("avg l2: {}".format(l2.item()/ train_data.size()[0]))
print("avg l3: {}".format(l3.item()/ train_data.size()[0]))
print("avg l4: {}".format(l4.item()/ train_data.size()[0]))
#accuracy = accuracy/(train_data.size()[0]*train_data.size()[1])
return train_loss.item() / train_data.size()[0], accuracy
def test(test_data, test_labels, model):
test_loss = 0
with torch.no_grad():
for batch_idx, y in enumerate(test_data):
y = y.float()
y = y.to(device)
y = y.view(-1,1)
test_labels = test_labels.float()
test_labels = test_labels.to(device)
labels = test_labels[batch_idx, :].view(-1,1)
_, _, _, _, total_loss, accuracy = model.loss_function(y, labels)
test_loss += total_loss#.item()
test_loss /= test_data.size()[0]
#accuracy /= (test_data.size()[0]*test_data.size()[1])
#print(accuracy)
return test_loss.item(), accuracy
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-i', '--data_dir', type=str,
default='data', help='Location for the dataset')
parser.add_argument('-o', '--save_dir', type=str, default='checkpoints',
help='Location for parameter checkpoints and samples')
parser.add_argument('-p', '--print_every', type=int, default=1,
help='how many iterations between print statements')
parser.add_argument('-t', '--save_interval', type=int, default=1,
help='Every how many epochs to write checkpoint/samples?')
parser.add_argument('-r', '--load_params', type=str, default=None,
help='Restore training from previous model checkpoint?')
parser.add_argument('-k', '--nr_gaussian_mix', type=int, default=4,
help='Number of components in the mixture.')
parser.add_argument('-z', '--x_dim', type=int, default=2,
help='Dimension of the latent variable x.')
parser.add_argument('-w', '--w_dim', type=int, default=2,
help='Dimension of the latent variable w.')
parser.add_argument('-hd', '--hidden_dim', type=int, default=32,
help='Number of neurons of each fc layer.')
parser.add_argument('-hl', '--hidden_layers', type=int, default=2,
help='Number of dense layers in each network.')
parser.add_argument('-lr', '--lr', type=float,
default=0.001, help='Learning rate')
parser.add_argument('-b', '--batch_size', type=int, default=100,
help='Batch size during training per GPU')
parser.add_argument('-x', '--max_epochs', type=int,
default=200, help='How many epochs to run in total?')
parser.add_argument('-s', '--seed', type=int, default=1,
help='Random seed to use')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
global device
device = torch.device("cuda" if args.cuda else "cpu")
print(device)
# reproducibility
torch.manual_seed(args.seed)
np.random.seed(args.seed)
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if os.path.exists(args.data_dir):
path = os.path.join(args.data_dir, "traj.npy")
data = torch.from_numpy(np.load(path))
labels = torch.from_numpy(np.load("./data/labels.npy"))
train_data, test_data, train_labels, test_labels = seperate_dataset(data, labels, 4000000)
n_samples,input_dim = train_data.size()
n_samples_test,_ = test_data.size()
num_batches = int(n_samples / args.batch_size)
num_batches_test = int(n_samples_test / args.batch_size)
train_data = train_data[0:num_batches*args.batch_size].view(-1, args.batch_size)
test_data = test_data[0:num_batches_test*args.batch_size].view(-1, args.batch_size)
train_labels = train_labels[0:num_batches*args.batch_size].view(-1, args.batch_size)
test_labels = test_labels[0:num_batches_test*args.batch_size].view(-1, args.batch_size)
epoch = 0
best = True
min_test_loss = 1000000
train_loss_list = list()
test_loss_list = list()
train_accuracy_list = list()
test_accuracy_list = list()
if args.load_params:
model, epoch, optimizer, _ = load_checkpoint(args.load_params)
print('model parameters loaded')
else:
model = GMVAE(K = args.nr_gaussian_mix, sigma = 1, input_dim = input_dim, x_dim = args.x_dim, w_dim = args.w_dim, hidden_dim = args.hidden_dim, hidden_layers = args.hidden_layers, device = device)
optimizer = optim.Adam(model.parameters(), lr=args.lr)
model = model.to(device)
while(epoch <= args.max_epochs):
train_loss, accuracy_train = train(train_data, train_labels, model, optimizer)
train_loss_list.append(train_loss)
train_accuracy_list.append(accuracy_train)
test_loss, accuracy_test = test(test_data, test_labels, model)
test_loss_list.append(test_loss)
test_accuracy_list.append(accuracy_test)
if (epoch % args.print_every == 0):
print('Epoch: {} Average loss: {:.4f}'.format(epoch, train_loss))
print('Epoch: {} Average test loss: {:.4f}'.format(epoch, test_loss))
print("Accuracy training: {}".format(accuracy_train))
print("Accuracy test: {}".format(accuracy_test))
if test_loss < min_test_loss:
best = True
if (best):
model_out_path = os.path.join(args.save_dir, "best.pth")
save_checkpoint(model, epoch, model_out_path, args.save_dir, optimizer, args.lr, -1)
best = False
epoch += 1
plt.plot(train_loss_list)
plt.plot(test_loss_list)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend(("training loss", "test loss"), loc="upper right")
plt.savefig("loss.pdf")
plt.figure()
plt.plot(train_accuracy_list)
plt.plot(test_accuracy_list)
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend(("training accuracy", "test accuracy"), loc="upper right")
plt.savefig("accuracy.pdf")
if __name__ == "__main__":
main()