-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparser.c
executable file
·343 lines (333 loc) · 13 KB
/
parser.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
#include "parser.h"
#include "ocaml.h"
#include "lexer.h"
#include "lambda.h"
#include "utils.h"
bool precedence(token_t op, int* prec) {
// After this call, prec points to the precedence value
// And the function returns +1/0/-1 for left_assoc/suffix_or_prefix op/right_assoc respectively
if(!op.is_finite) {
// Hence, it is an application : M N
*prec = 10;
return 1;
}
switch(op.val.f_val) {
case LESS :
*prec = 4;
return 1;
case GREATER :
*prec = 4;
return 1;
case LEQ :
*prec = 4;
return 1;
case GEQ :
*prec = 4;
return 1;
case NEQ :
*prec = 4;
return 1;
case EQUALS :
*prec = 4;
return 1;
case PLUS :
*prec = 7;
return 1;
case MINUS :
*prec = 7;
return 1;
case TIMES :
*prec = 8;
return 1;
case DIVIDE :
*prec = 8;
return 1;
case AND :
*prec = 3;
return 1;
case OR :
*prec = 2;
return 1;
case DOT : // TODO : is this a relevant case ?
case COMMA :
*prec = 1;
return 0;
case COLON :
return NULL;
case SEMICOLON :
*prec = 0;
return -1;
case CONCAT_LST :
*prec = 5;
return -1;
case CONCAT_STR :
*prec = 5;
return -1;
case CONS :
*prec = 6;
return -1;
default : // Hence, it is an application : M N
*prec = 10;
return 1;
}
}
int PrecedenceLt(token_t op1, token_t op2) {
int prec1;
int prec2;
precedence(op1, &prec1);
int assoc2 = precedence(op2, &prec2);
if(prec1 < prec2) {
return 1;
} else if (prec1 == prec2 && assoc2 == -1) {
return 0;
} else {
return -1;
}
}
token_t* pre_process(token_t* lexed_code, int n) {
// convert [begin]/[end] into [(]/[)]
token_list_t* pre_processed_lst = tok_lst_init();
for(int i = 0; i < n; ++i) {
if(lexed_code[i].key == KEYWORD && lexed_code[i].val.f_val == BEGIN) {
token_t cur;
cur.key = KEYWORD;
cur.val.f_val = OPEN_PARENTHESIS;
pre_processed_lst = concat(cur, pre_processed_lst);
} else if(lexed_code[i].key == KEYWORD && lexed_code[i].val.f_val == END) {
token_t cur;
cur.key = KEYWORD;
cur.val.f_val = END_PARENTHESIS;
pre_processed_lst = concat(cur, pre_processed_lst);
} else if(lexed_code[i].key == KEYWORD && lexed_code[i].val.f_val == FUNMATCH) {
char* fresh = fresh_var(false);
int fresh_len = strlen(fresh);
token_t cur1; // fun
cur1.key = KEYWORD;
cur1.val.f_val = FUN;
token_t cur2; // x
cur2.key = IDENTIFIER;
cur2.val.id_name = malloc(sizeof(char)*fresh_len);
strcpy(fresh, cur2.val.id_name);
token_t cur3; // ->
cur3.key = KEYWORD;
cur3.val.f_val = MAPSTO;
token_t cur4; // match
cur4.key = KEYWORD;
cur4.val.f_val = MATCH;
token_t cur5; // x
cur5.key = IDENTIFIER;
cur5.val.id_name = malloc(sizeof(char)*fresh_len);
strcpy(fresh, cur5.val.id_name);
token_t cur6; // with
cur6.key = KEYWORD;
cur6.val.f_val = WITH;
pre_processed_lst = concat(cur1, pre_processed_lst);
pre_processed_lst = concat(cur2, pre_processed_lst);
pre_processed_lst = concat(cur3, pre_processed_lst);
pre_processed_lst = concat(cur4, pre_processed_lst);
pre_processed_lst = concat(cur5, pre_processed_lst);
pre_processed_lst = concat(cur6, pre_processed_lst);
} else {
pre_processed_lst = concat(lexed_code[i], pre_processed_lst);
}
}
return lst_of_arr(pre_processed_lst, &n);
}
void incr_pos(token_t* lexed_code, int *pos, int n) {
fprintf(stderr, "\n");
print_token(lexed_code[*pos]);
++(*pos);
if(n < *pos) { // We let *pos reach n, because of the invariant '[lexed_code[*pos]] is the token just after the one just read'
fprintf(stderr, "Syntax Error : Unexpected End of File");
} else {
if(n == *pos) {
fprintf(stderr, "WARNING :EOF\n");
} else {
print_token(lexed_code[*pos]);
}
fprintf(stderr, "\n");
}
}
// Parse one term and then stop, for instance, doesn't read M N nor M;N nor M + N but only M
// After a call to one_parser, pos points to the position just after the last token read
ml_term_t* one_parser(token_t* lexed_code, int* pos, int n) {
if(lexed_code[*pos].key == KEYWORD || lexed_code[*pos].key == OPERATOR || lexed_code[*pos].key == PUNCTUATION) {
ml_term_t* argument;
ml_term_t* res;
switch(lexed_code[*pos].val.f_val) {
case LET :
incr_pos(lexed_code, pos, n);
bool is_rec = (lexed_code[*pos].key == KEYWORD && lexed_code[*pos].val.f_val == REC);
if(is_rec) { incr_pos(lexed_code, pos, n); }
fprintf(stderr, "HEY\n");
argument = one_parser(lexed_code, pos, n);
fprintf(stderr, "HEY\n");
if(!(lexed_code[*pos].key == OPERATOR && lexed_code[*pos].val.f_val == EQUALS)) {
fprintf(stderr, "BONJOUR\n");
--(*pos);
lexed_code[*pos].key = KEYWORD;
lexed_code[*pos].val.f_val = FUN;
int tmp_pos;
for(tmp_pos = (*pos); !(lexed_code[tmp_pos].key == OPERATOR && lexed_code[tmp_pos].val.f_val == EQUALS); ++tmp_pos) {}
lexed_code[tmp_pos].val.f_val = MAPSTO;
// read arg
ml_term_t* val = parser(lexed_code, pos, n, STOP_IN);
ml_term_t* in = parser(lexed_code, pos, n, STOP_SEMICOLON);
res = Let(argument, is_rec, val, in);
} else {
fprintf(stderr, "BONSOIR\n");
incr_pos(lexed_code, pos, n);
ml_term_t* val = parser(lexed_code, pos, n, STOP_IN);
ml_term_t* in = parser(lexed_code, pos, n, STOP_SEMICOLON);
res = Let(argument, is_rec, val, in);
free_ml_term(argument);
}
return res;
case FUN :
incr_pos(lexed_code, pos, n);
argument = one_parser(lexed_code, pos, n);
ml_term_t* body;
if(!(lexed_code[*pos].key == KEYWORD && lexed_code[*pos].val.f_val == MAPSTO)) {
--(*pos);
lexed_code[*pos].key = KEYWORD;
lexed_code[*pos].val.f_val = FUN;
body = one_parser(lexed_code, pos, n);
} else {
incr_pos(lexed_code, pos, n);
body = one_parser(lexed_code, pos, n);
}
switch(argument->type) {
case VARIABLE :
res = Fun(argument->content.var_name, body);
free_ml_term(argument);
break;
case COUPLE : // TODO Take care of declared types
case LIST :
ml_term_t* args[1] = {argument};
ml_term_t* bodys[1] = {body};
ml_term_t* val = malloc(sizeof(ml_term_t));
val->type = VARIABLE;
val->content.var_name = "v";
res = Fun("v", Match(val, args, bodys));
break;
default :
fprintf(stderr, "Syntax Error : Not a valid argument");
res = NULL;
break;
}
return res;
case TYPE :
// TODO
return NULL;
case IF :
incr_pos(lexed_code, pos, n);
ml_term_t* cond = parser(lexed_code, pos, n, STOP_THEN);
ml_term_t* i = one_parser(lexed_code, pos, n);
ml_term_t* e;
if(lexed_code[*pos].key == KEYWORD && lexed_code[*pos].val.f_val == ELSE) {
incr_pos(lexed_code, pos, n);
e = one_parser(lexed_code, pos, n);
} else {
e = ml_unit();
}
return IfThenElse(cond, i, e);
case NOT :
incr_pos(lexed_code, pos, n);
ml_term_t* lhs = one_parser(lexed_code, pos, n);
return BoolForm('!', lhs, NULL);
case OPEN_PARENTHESIS :
incr_pos(lexed_code, pos, n);
return parser(lexed_code, pos, n, STOP_END_PARENTHESIS);
case OPEN_SQBRACKET :
incr_pos(lexed_code, pos, n);
if(!(lexed_code[*pos].key == PUNCTUATION && lexed_code[*pos].val.f_val == END_SQBRACKET)) {
ml_term_t* head = one_parser(lexed_code, pos, n);
lexed_code[*pos].key = KEYWORD;
lexed_code[*pos].val.f_val = OPEN_SQBRACKET;
return List(head, one_parser(lexed_code, pos, n));
} else {
return NULL;
}
case OPEN_BRACKET :
fprintf(stderr, "TODO");
return NULL;
case TRUE :
return ml_bool(true);
case FALSE :
return ml_bool(false);
default :
fprintf(stderr, "Syntax Error");
while(true) {}
return NULL;
}
} else if(lexed_code[*pos].key == IDENTIFIER) {
incr_pos(lexed_code, pos, n);
return ml_var(lexed_code[*pos - 1].val.id_name);
} else if(lexed_code[*pos].key == LITERAL) { // Thus, the literal is not a boolean
incr_pos(lexed_code, pos, n);
return ml_int(lexed_code[*pos - 1].val.n);
}
fprintf(stderr, "Go see end of parse_one function"); // TODO copy string ! ! ! ! !
return NULL;
}
bool end_condition(stop_cond_t until, token_t* lexed_code, int* pos, int n) {
switch(until) {
case STOP_IN :
fprintf(stderr, "1\n");
return lexed_code[*pos].is_finite && lexed_code[*pos].val.f_val == IN;
case STOP_SEMICOLON :
fprintf(stderr, "2\n");
printf("%d..%d..%d..\n", *pos < n, true, true);
return *pos < n ? lexed_code[*pos].is_finite && lexed_code[*pos].val.f_val == SEMICOLON : true;
case STOP_THEN :
fprintf(stderr, "3\n");
return lexed_code[*pos].is_finite && lexed_code[*pos].val.f_val == THEN;
case STOP_END_PARENTHESIS :
fprintf(stderr, "4\n");
return lexed_code[*pos].is_finite && lexed_code[*pos].val.f_val == END_PARENTHESIS;
case STOP_EOF :
fprintf(stderr, "5\n");
return !(*pos < n);
}
return NULL;
}
ml_term_t* merge_terms(ml_term_t* M, int min_precedence, stop_cond_t until, token_t* lexed_code, int* pos, int n) {
token_t op = lexed_code[*pos];
token_t next_op = lexed_code[*pos];
int precedence_comparison;
int cur_precedence;
precedence(next_op, &cur_precedence);
ml_term_t* N;
while(min_precedence <= cur_precedence && !end_condition(until, lexed_code, pos, n)) {
fprintf(stderr, "hey0\n");
op = next_op;
if(cur_precedence != 10) { incr_pos(lexed_code, pos, n); } // i.e. if it's not a function application
N = one_parser(lexed_code, pos, n);
if(end_condition(until, lexed_code, pos, n)) {
fprintf(stderr, "hey1\n");
} else {
fprintf(stderr, "hey1.5\n");
next_op = lexed_code[*pos];
precedence_comparison = PrecedenceLt(op, next_op);
}
while(0 <= precedence_comparison && !end_condition(until, lexed_code, pos, n)) {
fprintf(stderr, "hey2\n");
N = merge_terms(N, min_precedence + precedence_comparison, until, lexed_code, pos, n);
next_op = lexed_code[*pos];
}
M = ml_constructor(op, M, N);
}
return M;
}
// For [until] possible values, see parser.h
ml_term_t* parser(token_t* lexed_code, int* pos, int n, stop_cond_t until) {
// We can assume that *pos < n, because if they are equal, it was already detected by the incr_pos function
ml_term_t* M = one_parser(lexed_code, pos, n);
fprintf(stderr,"bonjour\n");
if(!end_condition(until, lexed_code, pos, n)) {
fprintf(stderr, "au revoir\n");
M = merge_terms(M, 0, until, lexed_code, pos, n);
}
if(!(*pos == n && (until == STOP_EOF || until == STOP_SEMICOLON))) { incr_pos(lexed_code, pos, n); }
return M;
}