-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathch09_06.wgsl
302 lines (236 loc) · 7.94 KB
/
ch09_06.wgsl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
struct VertexOutput {
@builtin(position) pos: vec4<f32>,
};
struct GlobalsUniform {
@location(0) resolution: vec2<f32>,
@location(1) time: f32,
@location(2) channel: u32,
@location(3) mouse: vec2<f32>,
};
@group(0) @binding(0)
var<uniform> globals: GlobalsUniform;
let K = vec3<u32>(0x456789abu, 0x6789ab45u, 0x89ab4567u);
let U = vec3<u32>(1u, 2u, 3u);
let UINT_MAX = 0xffffffffu;
let PI = 3.1415926;
let SPEED = 0.6;
//********** Hash functions *********************************************//
fn uhash22(n_in: vec2<u32>) -> vec2<u32> {
var n = n_in;
n ^= (n.yx << U.xy);
n ^= (n.yx >> U.xy);
n *= K.xy;
n ^= (n.yx << U.xy);
return n * K.xy;
}
fn uhash33(n_in: vec3<u32>) -> vec3<u32> {
var n = n_in;
n ^= (n.yzx << U);
n ^= (n.yzx >> U);
n *= K;
n ^= (n.yzx << U);
return n * K;
}
fn hash22(p: vec2<f32>) -> vec2<f32> {
let n = bitcast<u32>(p);
return vec2<f32>(uhash22(n)) / vec2(f32(UINT_MAX));
}
fn hash33(p: vec3<f32>) -> vec3<f32> {
let n = bitcast<u32>(p);
return vec3<f32>(uhash33(n)) / vec3(f32(UINT_MAX));
}
fn hash21(p: vec2<f32>) -> f32 {
let n = bitcast<u32>(p);
return f32(uhash22(n).x) / f32(UINT_MAX);
}
fn hash31(p: vec3<f32>) -> f32 {
let n = bitcast<u32>(p);
return f32(uhash33(n).x) / f32(UINT_MAX);
}
//********** Rotation *********************************************//
fn rot2(p: vec2<f32>, t: f32) -> vec2<f32> {
return vec2(
cos(t) * p.x - sin(t) * p.y,
sin(t) * p.x + cos(t) * p.y
);
}
fn rotX(p: vec3<f32>, t: f32) -> vec3<f32> {
let res = rot2(p.yz, t);
return vec3(p.x, res[0], res[1]);
}
fn rotY(p: vec3<f32>, t: f32) -> vec3<f32> {
let res = rot2(p.xz, t);
return vec3(res[0], p.y, res[1]);
}
fn rotZ(p: vec3<f32>, t: f32) -> vec3<f32> {
let res = rot2(p.xy, t);
return vec3(res[0], res[1], p.z);
}
fn euler(p: vec3<f32>, t: vec3<f32>) -> vec3<f32> {
return rotZ(rotY(rotX(p, t.x), t.y), t.z);
}
fn mod2(x: f32, y: f32) -> f32 {
return x - y * floor(x / y);
}
//********** Perlin Noise *********************************************//
fn gtable3(lattice: vec3<f32>, p: vec3<f32>) -> f32 {
let n = bitcast<u32>(lattice);
let ind = (uhash33(n).x >> 28u);
// select()'s argument is `select(<false case>, <true case>, <condition>)`
let u = select(p.x, p.y, ind >= 8u);
let v = select(p.y, select(p.z, p.x, ind == 12u || ind == 14u), ind >= 4u);
return select(-u, u, (ind & 1u) == 0u) + select(-v, v, (ind & 2u) == 0u);
}
fn pnoise31(p: vec3<f32>) -> f32 {
let n = floor(p);
var f = fract(p);
var v: array<f32, 8>;
for (var k = 0; k < 2; k++) {
for (var j = 0; j < 2; j++) {
for (var i = 0; i < 2; i++) {
let ijk = vec3(f32(i), f32(j), f32(k));
v[i+2*j+4*k] = gtable3(n + ijk, f - ijk) * 0.70710678;
}
}
}
// Hermite interpolation
f = f * f * f * (10.0 - 15.0 * f + 6.0 * f * f);
var w: array<f32, 2>;
for (var i = 0; i < 2; i++) {
w[i] = mix(mix(v[4*i], v[4*i+1], f[0]), mix(v[4*i+2], v[4*i+3], f[0]), f[1]);
}
return 0.5 * mix(w[0], w[1], f[2]) + 0.5;
}
fn gtable2(lattice: vec2<f32>, p: vec2<f32>) -> f32 {
let n = bitcast<u32>(lattice);
let ind = uhash22(n).x >> 29u;
// select()'s argument is `select(<false case>, <true case>, <condition>)`
let u = 0.92387953 * select(p.x, p.y, ind >= 4u);
let v = 0.38268343 * select(p.y, p.x, ind >= 4u);
return select(-u, u, (ind & 1u) == 0u) + select(-v, v, (ind & 2u) == 0u);
}
fn pnoise21(p: vec2<f32>) -> f32 {
let n = floor(p);
var f = fract(p);
var v: array<f32, 4>;
for (var j = 0; j < 2; j++) {
for (var i = 0; i < 2; i++) {
let ij = vec2(f32(i), f32(j));
v[i+2*j] = gtable2(n + ij, f - ij);
}
}
// Hermite interpolation
f = f * f * f * (10.0 - 15.0 * f + 6.0 * f * f);
return 0.5 * mix(mix(v[0], v[1], f[0]), mix(v[2], v[3], f[0]), f[1]) + 0.5;
}
//********** fBM *********************************************//
fn fbm21(p: vec2<f32>, g: f32) -> f32 {
var val = 0.0;
var amp = 1.0;
var freq = 1.0;
for (var i = 1; i < 4; i++) {
val += amp * (pnoise21(freq * p) - 0.5);
amp *= g;
freq *= 2.01;
}
return 0.5 * val + 0.5;
}
fn warp21(p: vec2<f32>, g: f32) -> f32 {
var val = 0.0;
for (var i = 0; i < 4; i++) {
val = fbm21(p + g * vec2(cos(2.0 * PI * val), sin(2.0 * PI * val)), 0.5);
}
return val;
}
//********** Texture *********************************************//
fn tex(st: vec2<f32>, g: f32) -> f32 {
return warp21(st, g);
}
//********** Utilities *********************************************//
fn hsv2rgb(c: vec3<f32>) -> vec3<f32> {
// `saturate(e)` is a shortcut of `clamp(e, 0.0, 1.0)`.
let rgb = saturate(abs((c.x * 6.0 + vec3(0.0, 4.0, 2.0)) % 6.0 - 3.0) - 1.0);
return c.z * mix(vec3(1.0), rgb, c.y);
}
//********** SDF *********************************************//
// c.f. https://www.shadertoy.com/view/wsSGDG
fn octahedron_sdf_(p_in: vec3<f32>, s: f32) -> f32 {
let p = abs(p_in);
let m = p.x + p.y + p.z - s;
let r = 3.0 * p - m;
var q: vec3<f32>;
if r.x < 0.0 {
q = p.xyz;
} else if r.y < 0.0 {
q = p.yzx;
} else if r.z < 0.0 {
q = p.zxy;
} else {
return m * 0.57735027;
}
let k = clamp(0.5 * (q.z - q.y + s), 0.0, s);
return length(vec3(q.x, q.y - s + k, q.z - k));
}
fn plane_sdf(p: vec3<f32>, n: vec3<f32>, s: f32) -> f32 {
// sqrt(3) / 2
return dot(normalize(n), p) - s * 0.86602540378;
}
fn octahedron_sdf(p: vec3<f32>, s: f32) -> f32 {
return plane_sdf(abs(p), vec3(1.0), s);
}
fn sphere_sdf(p: vec3<f32>, c: vec3<f32>, r: f32) -> f32 {
return length(p - c) - r;
}
fn box_sdf(p_in: vec3<f32>, c: vec3<f32>, d: vec3<f32>, t: f32) -> f32 {
// 平行移動
let p = abs(p_in - c);
return length(max(p - d, vec3(0.0))) + min(max(max(p.x - d.x, p.y - d.y), p.z - d.z), 0.0) - t;
}
fn smin(a: f32, b: f32, k: f32) -> f32 {
let h = saturate(0.5 + 0.5 * (b - a)/ k);
return mix(b, a, h) - k * h * (1.0 - h);
}
fn sdf(p: vec3<f32>) -> f32 {
// return box_sdf(fract(p + 0.5) - 0.5, vec3(0.0), vec3(0.2), 0.0);
return octahedron_sdf((fract(2.0 * p + 0.5) - 0.5) * (1.0 / (2. + 0.2 * f32(globals.time))), 0.1);
}
fn grad_sdf(p: vec3<f32>) -> vec3<f32> {
let eps = 0.001;
return normalize(vec3(
sdf(p + vec3(eps, 0., 0.)) - sdf(p - vec3(eps, 0., 0.)),
sdf(p + vec3( 0., eps, 0.)) - sdf(p - vec3( 0., eps, 0.)),
sdf(p + vec3( 0., 0., eps)) - sdf(p - vec3( 0., 0., eps))
));
}
//********** Main *********************************************//
@fragment
fn fs_main(in: VertexOutput) -> @location(0) vec4<f32> {
var pos = (2.0 * in.pos.xy - globals.resolution) / min(globals.resolution.x, globals.resolution.y);
// Y direction is upside down
pos.y = -pos.y;
// position of the camera
let t = vec3(0.1 * globals.time);
let camera_pos = euler(vec3( 0.0, 0.0, 4.0 + 1.2 * sin(globals.time * 0.2)), t);
let camera_dir = euler(vec3( 0.0, 0.0, -1.0), t);
let camera_up = euler(vec3( 0.0, 1.0, 0.0), t);
let light_dir = euler(vec3( 0.0, 0.0, 1.0), t);
// screen
let camera_side = cross(camera_dir, camera_up);
let target_depth = 1.0;
var ray = (camera_side * pos.x + camera_up * pos.y + camera_dir * target_depth);
// initial ray position
var r = camera_pos + ray;
ray = normalize(ray);
var color = vec3(0.0);
for (var i = 0; i < 50; i++) {
// if the ray reacyhes near enough to the surface, stop there
if sdf(r) < 0.001 {
let ambient_light = 0.2;
let diff = pow(0.9 * max(dot(light_dir, grad_sdf(r)), 0.0), 0.8);
color = vec3(0.40, 0.88, 0.98) * (diff + ambient_light);
}
// otherwise, move the ray forward
r += sdf(r) * ray;
}
return vec4(color, 1.0);
}