-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweb_crawling_to_blob.py
238 lines (208 loc) · 7.64 KB
/
web_crawling_to_blob.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""
Author: You Sen Wang (Ethan)
Started Date: 05/12/2020
Email: [email protected]
"""
import requests
import bs4
from bs4 import BeautifulSoup as bs
import datetime
import csv
import random, time
start_page = 1
num_of_pages = 1
keyword104 = 'SAP'
head = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/60.0.3112.90 Safari/537.36',
'Accept-Language':'zh-TW,zh;q=0.8,en-US;q=0.6,en;q=0.4'}
my_params = {'ro':'0', # 限定全職的工作,如果不限定則輸入0
'keyword':keyword104, # 想要查詢的關鍵字
#'area':'6001001000', # 限定在台北的工作
#'isnew':'90', # 只要最近三個月有更新的過的職缺
#'jobsource' : '2018indexpoc'
'mode':'s',
'kwop': '7',
'order':'15'}
positions_out=f'104人力銀行_{keyword104}_positions.csv'
url = 'https://www.104.com.tw/jobs/search/?'
companies_out = f'104人力銀行_{keyword104}_companies.csv'
company_url = 'https://www.104.com.tw/cust/list/index?'
companies_columns=[
'公司名稱',
'地址',
'產業類別',
'資本額',
'員工人數',
'網址',
'抓取時間'
]
def get_company_data(company):
comp_dat = company.find_all('span')
company_data = {
'公司名稱' : company.h1.a.text,
'地址' : comp_dat[0].text,
'產業類別' : comp_dat[1].text,
'資本額' : comp_dat[2].text.strip('資本額:'),
'員工人數' : comp_dat[3].text.strip('員工人數:'),
'網址' : company.h1.a.get('href'),
'抓取時間' : str(datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
}
return company_data
jobs_columns=[
'職缺內容',
'公司名稱',
'地址',
'薪資',
'網址',
'抓取時間'
]
def get_job_data(job):
job_fetch_time = str(datetime.datetime.now().strftime("%Y/%m/%d %H:%M:%S"))
job_name=job.find('a',class_="js-job-link").text
job_company=job.get('data-cust-name')
job_loc=job.find('ul', class_='job-list-intro').find('li').text
job_pay=job.find('span',class_='b-tag--default').text #薪資
urls = job.find_all('a')
job_url = 'https:' + urls[0].get("href")
#company104_url = 'https:' + urls[1].get("href")
job_data = {
'職缺內容':job_name,
'公司名稱':job_company,
'地址':job_loc,
'薪資':job_pay,
'網址':job_url,
'抓取時間': job_fetch_time
}
return job_data
from azure.storage.blob import (
BlobServiceClient, ContainerClient, BlobClient
)
import json
config_source = "./infofab-sapforsales-config.json"
with open(config_source, encoding='utf-8') as f:
config = json.load(f)
storage_name = config['storage_name']
storage_key = config['storage_key1']
storage_string = config['storage_connection_string1']
storage_url = f"https://{storage_name}.blob.core.windows.net/"
blob_service_client = BlobServiceClient(
account_url=storage_url,
credential=storage_key
)
account_info = blob_service_client.get_account_information()
container_name = config['container_name']
container_client = ContainerClient(
account_url=storage_url,
container_name=container_name,
credential=storage_key
)
print(dir(container_client))
#print(dir(blob_client))
blob_list = container_client.list_blobs()
for blob in blob_list:
print("\t" + blob.name)
blob_client_positions = BlobClient(
account_url=storage_url,
container_name=storage_name,
blob_name="104人力銀行_SAP_positions.csv",
credential=storage_key
)
blob_client_companies = BlobClient(
account_url=storage_url,
container_name=storage_name,
blob_name="104人力銀行_SAP_companies.csv",
credential=storage_key
)
from io import BytesIO, StringIO
def convert_string_bytes_buffer(string_buffer: StringIO) -> BytesIO:
string_buffer.seek(0)
bytes_buffer = BytesIO()
while True:
line = string_buffer.readline()
if not line:
break
bytes_buffer.write(line.encode('utf-8'))
bytes_buffer.seek(0)
return bytes_buffer
def save_to_blob(blob_name, col_name, all_data):
print(col_name)
with StringIO() as string_buffer:
dictWriter = csv.DictWriter(string_buffer, fieldnames=col_name)
dictWriter.writeheader()
for dat in all_data:
try:
print(dat)
dictWriter.writerow(dat)
except UnicodeEncodeError:
print(dat)
dictWriter.writerow({k:v.encode("utf-8") for k,v in dat.items()})
pass
blob_client = BlobClient(
account_url=storage_url,
container_name=storage_name,
blob_name=blob_name,
credential=storage_key
)
with convert_string_bytes_buffer(string_buffer) as bytes_buffer:
blob_client.create_append_blob(bytes_buffer)
bytes_buffer.close()
string_buffer.close()
print(f"New rows/data are written in {blob_name}.")
# print(dir(blob_client_companies))
# import os.path
# def save_to_csv(file_name, col_name, all_data):
# write_headers = True
# if os.path.isfile(file_name):
# write_headers = False
# #try:
# with open(file_name,'a+', newline='') as csvFile: #定義CSV的寫入檔,並且每次寫入完會換下一行
# dictWriter = csv.DictWriter(csvFile, fieldnames=col_name) #定義寫入器
# if write_headers:
# dictWriter.writeheader()
# print(f"write headers to {file_name}.")
# for dat in all_data:
# try:
# dictWriter.writerow(dat)
# except UnicodeEncodeError:
# print(dat)
# dictWriter.writerow({k:v.encode("utf-8") for k,v in dat.items()})
# pass
# csvFile.close()
# print(f"New rows/data are written in {file_name}.")
all_job_data = []
all_comp_data = []
for page in range(start_page, num_of_pages+1):
print(("*" * 20) + f"page: {page}" + ("*" * 20))
my_params['page'] = str(page)
res = requests.get(url, my_params, headers=head)
soup = bs(res.text, 'html.parser')
jobs = soup.find_all('article',class_='js-job-item')
for job in jobs:
print("-" *100)
job_data = get_job_data(job)
company_name = job_data['公司名稱']
# Check to see if we already search the company before.
if any(job_dat['公司名稱'] == company_name for job_dat in all_job_data):
print(f"{company_name} already exists, skip.")
continue
all_job_data.append(job_data)
print(f"{positions_out} will append: {job_data['職缺內容']}")
company_param = {
"keyword": str(company_name),
'mode':'s'
}
company_req = requests.get(company_url, company_param, headers=head)
comp_soup = bs(company_req.text, 'html.parser')
#print(comp_soup.body.prettify())
companies = comp_soup.body.find_all('article', class_='items')
for company in companies:
if company_name == company.h1.a.text:
company_data = get_company_data(company)
all_comp_data.append(company_data)
print(f"{companies_out} will append: {company_data['公司名稱']}")
time.sleep(random.randint(1,3))
# save_to_csv(fn, jobs_columns, all_job_data)
# save_to_csv(companies_out, companies_columns, all_comp_data)
save_to_blob(positions_out, jobs_columns, all_job_data)
save_to_blob(companies_out, companies_columns, all_comp_data)
print(f"num_jobs: {len(all_job_data)}")
print(f"num_companies: {len(all_comp_data)}")