|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "" |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "markdown", |
| 19 | + "metadata": {}, |
| 20 | + "source": [] |
| 21 | + }, |
| 22 | + { |
| 23 | + "cell_type": "markdown", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "### Gibbs sampler for LDA" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 2, |
| 32 | + "metadata": {}, |
| 33 | + "outputs": [], |
| 34 | + "source": [ |
| 35 | + "# words\n", |
| 36 | + "import numpy as np\n", |
| 37 | + "W = np.array([0, 1, 2, 3, 4])\n", |
| 38 | + "\n", |
| 39 | + "# D := document words\n", |
| 40 | + "X = np.array([\n", |
| 41 | + " [0, 0, 1, 2, 2],\n", |
| 42 | + " [0, 0, 1, 1, 1],\n", |
| 43 | + " [0, 1, 2, 2, 2],\n", |
| 44 | + " [4, 4, 4, 4, 4],\n", |
| 45 | + " [3, 3, 4, 4, 4],\n", |
| 46 | + " [3, 4, 4, 4, 4]\n", |
| 47 | + "])\n", |
| 48 | + "\n", |
| 49 | + "N_D = X.shape[0] # num of docs\n", |
| 50 | + "N_V = W.shape[0] # num of words\n", |
| 51 | + "N_K = 2 # num of topics" |
| 52 | + ] |
| 53 | + }, |
| 54 | + { |
| 55 | + "cell_type": "code", |
| 56 | + "execution_count": 5, |
| 57 | + "metadata": {}, |
| 58 | + "outputs": [], |
| 59 | + "source": [ |
| 60 | + "import numpy as np\n", |
| 61 | + "# Dirichlet priors\n", |
| 62 | + "alpha = 1\n", |
| 63 | + "gamma = 1\n", |
| 64 | + "\n", |
| 65 | + "# Z := word topic assignment\n", |
| 66 | + "Z = np.zeros(shape=[N_D, N_V])\n", |
| 67 | + "\n", |
| 68 | + "for i in range(N_D):\n", |
| 69 | + " for l in range(N_V):\n", |
| 70 | + " Z[i, l] = np.random.randint(N_K) # randomly assign word's topic\n", |
| 71 | + "\n", |
| 72 | + "# Pi := document topic distribution\n", |
| 73 | + "theta = np.zeros([N_D, N_K])\n", |
| 74 | + "\n", |
| 75 | + "for i in range(N_D):\n", |
| 76 | + " theta[i] = np.random.dirichlet(alpha*np.ones(N_K))\n", |
| 77 | + "\n", |
| 78 | + "# phi := word topic distribution\n", |
| 79 | + "phi = np.zeros([N_K, N_V])\n", |
| 80 | + "\n", |
| 81 | + "for k in range(N_K):\n", |
| 82 | + " phi[k] = np.random.dirichlet(gamma*np.ones(N_V))\n", |
| 83 | + "\n", |
| 84 | + "for it in range(1000):\n", |
| 85 | + " # Sample from full conditional of Z\n", |
| 86 | + " # ---------------------------------\n", |
| 87 | + " for i in range(N_D):\n", |
| 88 | + " for v in range(N_V):\n", |
| 89 | + " # Calculate params for Z\n", |
| 90 | + " p_iv = np.exp(np.log(theta[i]) + np.log(phi[:, X[i, v]]))\n", |
| 91 | + " p_iv /= np.sum(p_iv)\n", |
| 92 | + "\n", |
| 93 | + " # Resample word topic assignment Z\n", |
| 94 | + " Z[i, v] = np.random.multinomial(1, p_iv).argmax()\n", |
| 95 | + "\n", |
| 96 | + " # Sample from full conditional of \\theta\n", |
| 97 | + " # ----------------------------------\n", |
| 98 | + " for i in range(N_D):\n", |
| 99 | + " m = np.zeros(N_K)\n", |
| 100 | + "\n", |
| 101 | + " # Gather sufficient statistics\n", |
| 102 | + " for k in range(N_K):\n", |
| 103 | + " m[k] = np.sum(Z[i] == k)\n", |
| 104 | + "\n", |
| 105 | + " # Resample doc topic dist.\n", |
| 106 | + " theta[i, :] = np.random.dirichlet(alpha + m)\n", |
| 107 | + "\n", |
| 108 | + " # Sample from full conditional of \\phi\n", |
| 109 | + " # ---------------------------------\n", |
| 110 | + " for k in range(N_K):\n", |
| 111 | + " n = np.zeros(N_V)\n", |
| 112 | + "\n", |
| 113 | + " # Gather sufficient statistics\n", |
| 114 | + " for v in range(N_V):\n", |
| 115 | + " for i in range(N_D):\n", |
| 116 | + " for l in range(N_V):\n", |
| 117 | + " n[v] += (X[i, l] == v) and (Z[i, l] == k)\n", |
| 118 | + "\n", |
| 119 | + " # Resample word topic dist.\n", |
| 120 | + " phi[k, :] = np.random.dirichlet(gamma + n)" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": 6, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [ |
| 128 | + { |
| 129 | + "name": "stdout", |
| 130 | + "output_type": "stream", |
| 131 | + "text": [ |
| 132 | + "[[0.33941922 0.66058078]\n", |
| 133 | + " [0.12011984 0.87988016]\n", |
| 134 | + " [0.02318953 0.97681047]\n", |
| 135 | + " [0.80301107 0.19698893]\n", |
| 136 | + " [0.94780545 0.05219455]\n", |
| 137 | + " [0.84677554 0.15322446]]\n" |
| 138 | + ] |
| 139 | + } |
| 140 | + ], |
| 141 | + "source": [ |
| 142 | + "print (theta)" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": null, |
| 148 | + "metadata": {}, |
| 149 | + "outputs": [], |
| 150 | + "source": [] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "markdown", |
| 154 | + "metadata": {}, |
| 155 | + "source": [ |
| 156 | + "### Mini-homework - Collapsed Gibbs Sampler for LDA\n", |
| 157 | + "自己重新推导一下Collapsed Gibbs Sampler,并实现一下LDA类并利用上面给定的YELP数据集来测试一下,并跟sklearn的结果比较一下。" |
| 158 | + ] |
| 159 | + }, |
| 160 | + { |
| 161 | + "cell_type": "code", |
| 162 | + "execution_count": 7, |
| 163 | + "metadata": {}, |
| 164 | + "outputs": [ |
| 165 | + { |
| 166 | + "ename": "IndentationError", |
| 167 | + "evalue": "expected an indented block (<ipython-input-7-fe62b0541667>, line 7)", |
| 168 | + "output_type": "error", |
| 169 | + "traceback": [ |
| 170 | + "\u001b[0;36m File \u001b[0;32m\"<ipython-input-7-fe62b0541667>\"\u001b[0;36m, line \u001b[0;32m7\u001b[0m\n\u001b[0;31m def fit(self, X, y=None):\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m expected an indented block\n" |
| 171 | + ] |
| 172 | + } |
| 173 | + ], |
| 174 | + "source": [ |
| 175 | + "class LDA:\n", |
| 176 | + " \"\"\"Latent Dirichlet allocation using collapsed Gibbs sampling\"\"\"\n", |
| 177 | + " \n", |
| 178 | + " def __init__():\n", |
| 179 | + " \n", |
| 180 | + "\n", |
| 181 | + " def fit(self, X, y=None):\n", |
| 182 | + " \"\"\"Fit the model with X.\"\"\"\n", |
| 183 | + " \n", |
| 184 | + "\n", |
| 185 | + " def fit_transform(self, X, y=None):\n", |
| 186 | + " \n", |
| 187 | + "\n", |
| 188 | + " def transform(self, X, max_iter=20, tol=1e-16):\n", |
| 189 | + " \n", |
| 190 | + " \n", |
| 191 | + " def loglikelihood(self):\n", |
| 192 | + " \"\"\"Calculate complete log likelihood, log p(w,z)\n", |
| 193 | + " Formula used is log p(w,z) = log p(w|z) + log p(z)\n", |
| 194 | + " \"\"\"\n", |
| 195 | + " def perplexity(self):\n", |
| 196 | + " \"\"\"Calculate the perplexity\"\"\"\n", |
| 197 | + " " |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [] |
| 206 | + } |
| 207 | + ], |
| 208 | + "metadata": { |
| 209 | + "kernelspec": { |
| 210 | + "display_name": "Python 3", |
| 211 | + "language": "python", |
| 212 | + "name": "python3" |
| 213 | + }, |
| 214 | + "language_info": { |
| 215 | + "codemirror_mode": { |
| 216 | + "name": "ipython", |
| 217 | + "version": 3 |
| 218 | + }, |
| 219 | + "file_extension": ".py", |
| 220 | + "mimetype": "text/x-python", |
| 221 | + "name": "python", |
| 222 | + "nbconvert_exporter": "python", |
| 223 | + "pygments_lexer": "ipython3", |
| 224 | + "version": "3.7.1" |
| 225 | + } |
| 226 | + }, |
| 227 | + "nbformat": 4, |
| 228 | + "nbformat_minor": 2 |
| 229 | +} |
0 commit comments