-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_loader.py
196 lines (162 loc) · 6.57 KB
/
data_loader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# -*- coding: utf-8 -*-
import os
import math
import torch
import random
import json
from collections import Counter
import jieba
PAD = '<pad>' # 0
UNK = '<unk>' # 1
BOS = '<s>' # 2
EOS = '</s>' # 3
# 输入: <s> I eat sth .
# 输出: I eat sth </s>
# encoding=utf-8
# import jieba
# strs=["我来到北京清华大学","乒乓球拍卖完了","中国科学技术大学"]
# for str in strs:
# seg_list = jieba.cut(str,use_paddle=True) # 使用paddle模式
# print("Paddle Mode: " + '/'.join(list(seg_list)))
# seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
# print("Full Mode: " + "/ ".join(seg_list)) # 全模式
# seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
# print("Default Mode: " + "/ ".join(seg_list)) # 精确模式
# seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
# print(", ".join(seg_list))
# seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
# print(", ".join(seg_list))
def read_lines(path):
"""
{"label": "102",
"label_desc": "news_entertainment",
"sentence": "江疏影甜甜圈自拍,迷之角度竟这么好看,美吸引一切事物",
"keywords": "江疏影,美少女,经纪人,甜甜圈"}
"""
with open(path, 'r',encoding='utf8') as f:
for line in f:
yield eval(line)
f.close()
class Vocab(object):
def __init__(self, specials=[PAD, UNK, BOS, EOS], config=None, **kwargs):
self.specials = specials
self.counter = Counter()
self.stoi = {}
self.itos = {}
self.weights = None
self.min_freq = config.min_freq
def make_vocab(self, dataset):
for x in dataset:
if x != [""]:
self.counter.update(x)
if self.min_freq > 1:
self.counter = {w: i for w, i in filter(
lambda x: x[1] >= self.min_freq, self.counter.items())}
self.vocab_size = 0
for w in self.specials:
self.stoi[w] = self.vocab_size
self.vocab_size += 1
for w in self.counter.keys():
self.stoi[w] = self.vocab_size
self.vocab_size += 1
self.itos = {i: w for w, i in self.stoi.items()}
def __len__(self):
return self.vocab_size
class DataSet(list):
def __init__(self, *args, config=None, is_train=True, dataset="train"):
self.config = config
self.is_train = is_train
self.dataset = dataset
self.data_path = os.path.join(self.config.data_path, dataset + ".json")
super(DataSet, self).__init__(*args)
def read(self):
for items in read_lines(self.data_path):
#sent = tuple(jieba.cut(items["sentence"], cut_all=False))
sent = tuple(items["sentence"])
label = items["label_desc"]
example = [sent, label]
self.append(example)
def _numericalize(self, words, stoi):
return [1 if x not in stoi else stoi[x] for x in words]
def numericalize(self, w2id, c2id):
for i, example in enumerate(self):
sent, label = example
sent = self._numericalize(sent, w2id)
label = c2id[label]
self[i] = (sent, label)
class DataBatchIterator(object):
def __init__(self, config, dataset="train",
is_train=True,
batch_size=32,
shuffle=False,
batch_first=False,
sort_in_batch=True):
self.config = config
self.examples = DataSet(
config=config, is_train=is_train, dataset=dataset)
self.vocab = Vocab(config=config)
self.cls_vocab = Vocab(specials=[], config=config)
self.is_train = is_train
self.max_seq_len = config.max_seq_len
self.sort_in_batch = sort_in_batch
self.is_shuffle = shuffle
self.batch_first = batch_first # [batch_size x seq_len x hidden_size]
self.batch_size = batch_size
self.num_batches = 0
self.device = config.device
def set_vocab(self, vocab):
self.vocab = vocab
def load(self, vocab_cache=None):
self.examples.read()
if not vocab_cache and self.is_train:
# 0: 分过词的句子, 1: 关键词, 2: 标记
self.vocab.make_vocab([x[0] for x in self.examples])
self.cls_vocab.make_vocab([[x[1]] for x in self.examples])
if not os.path.exists(self.config.save_vocab):
torch.save(self.vocab, self.config.save_vocab + ".txt")
torch.save(self.cls_vocab, self.config.save_vocab + ".cls.txt")
else:
self.vocab = torch.load(self.config.save_vocab + ".txt")
self.cls_vocab = torch.load(self.config.save_vocab + ".cls.txt")
assert len(self.vocab) > 0
self.examples.numericalize(
w2id=self.vocab.stoi, c2id=self.cls_vocab.stoi)
self.num_batches = math.ceil(len(self.examples)/self.batch_size)
def _pad(self, sentence, max_L, w2id, add_bos=False, add_eos=False):
if add_bos:
sentence = [w2id[BOS]] + sentence
if add_eos:
sentence = sentence + [w2id[EOS]]
if len(sentence) < max_L:
sentence = sentence + [w2id[PAD]] * (max_L-len(sentence))
return [x for x in sentence]
def pad_seq_pair(self, samples):
pairs = [pair for pair in samples]
Ls = [len(pair[0])+2 for pair in pairs]
max_Ls = max(Ls)
sent = [self._pad(
item[0], max_Ls, self.vocab.stoi, add_bos=True, add_eos=True) for item in pairs]
label = [item[1] for item in pairs]
batch = Batch()
batch.sent = torch.LongTensor(sent).to(device=self.device)
batch.label = torch.LongTensor(label).to(device=self.device)
if not self.batch_first:
batch.sent = batch.sent.transpose(1, 0).contiguous()
batch.mask = batch.sent.data.clone().ne(0).long().to(device=self.device)
return batch
def __iter__(self):
if self.is_shuffle:
random.shuffle(self.examples)
total_num = len(self.examples)
for i in range(self.num_batches):
samples = self.examples[i * self.batch_size:
min(total_num, self.batch_size*(i+1))]
# if self.sort_in_batch:
# samples = sorted(
# samples, key=lambda x: len(x[0]), reverse=True)
yield self.pad_seq_pair(samples)
class Batch(object):
def __init__(self):
self.sent = None
self.label = None
self.mask = None