-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_r3d_18.py
255 lines (207 loc) · 8.49 KB
/
train_r3d_18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.6.0
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# +
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import transforms, models
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score
import pandas as pd
import numpy as np
import os
import pickle
import logging
import random
import argparse
import traceback
from torchsummary import summary
from dataset import PEDataset
from utils import Timer
# -
def main(args, logger):
print = logger.info
print(args)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed(0)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
with open('data/data_splits.pkl', 'rb') as f:
data_splits = pickle.load(f)
train_paths = data_splits['train_paths']
val_paths = data_splits['val_paths']
test_paths = data_splits['test_paths']
print("train, val, test split: train {}, val {}, test{}"\
.format(len(train_paths), len(val_paths), len(test_paths)))
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((192, 192)),
])
# https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/p2ch12/training.py
# line 105 - 115
transform_3d_train = {
'crop': 192,
'rotate': 15,
}
train_set = PEDataset(paths=train_paths, mode='train', chunk_size=args.chunk_size,
transform=transform_train, transform_3d=transform_3d_train)
val_set = PEDataset(paths=val_paths, mode='val', chunk_size=args.chunk_size,
transform=transform_val)
print("train exams: {} | val exams: {}".format(train_set.get_num_exams(), val_set.get_num_exams()))
print("train chunks: {} | val chunks: {}".format(len(train_set), len(val_set)))
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=True)
print("train loader iters: {} | val loader iters: {}".format(len(train_loader), len(val_loader)))
if args.load_model == '':
model = models.video.r3d_18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 1)
else:
model = models.video.r3d_18(pretrained=False)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 1)
model.load_state_dict(torch.load("weights/"+args.load_model))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([args.pos_weight]))
print('')
print("Use cuda " + str(args.gpu))
print('')
device = torch.device("cuda:"+str(args.gpu) if torch.cuda.is_available() else "cpu")
model = model.to(device)
criterion = criterion.to(device)
print("Model:")
print(summary(model, input_size=(3, 10, 192, 192), batch_size=8, device=device, logger=logger))
print('')
train_losses_epoch = []
train_accs_epoch = []
train_aucs_epoch = []
val_losses_epoch = []
val_accs_epoch = []
val_aucs_epoch = []
best_auc = 0
timer = Timer()
for epoch in range(args.num_epochs):
print('Epoch {}/{}'.format(epoch, args.num_epochs - 1))
print('-' * 10)
# training
print('Training:')
model.train()
running_loss_epoch = 0.0
running_corrects_epoch = 0
total_samples = 0
y_trues_epoch = []
y_scores_epoch = []
timer.start()
for batch, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device) # N x C x D x H x W
labels = labels.to(device)
logit = model(inputs)
loss = criterion(logit.squeeze(-1), labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
with torch.no_grad():
pred_probs = logit.detach().squeeze(-1).sigmoid().cpu().numpy()
running_loss_epoch += loss.item() * inputs.size(0)
running_corrects_epoch += sum((pred_probs >= 0.5) == labels.cpu().numpy())
total_samples += inputs.size(0)
y_trues_epoch.extend(labels.cpu().numpy())
y_scores_epoch.extend(pred_probs)
if batch % 100 == 99:
print('{} iters trained | time: {:.2f}'.format(batch+1, timer.stop()))
timer.start()
timer.stop()
# report epoch loss, accuracy, and AUC
train_loss = running_loss_epoch / total_samples
train_acc = running_corrects_epoch / total_samples
train_auc = roc_auc_score(y_trues_epoch, y_scores_epoch)
print('Train: Loss {:.4f} | Acc {:.4f} | AUC {:.4f}'.format(train_loss, train_acc, train_auc))
train_losses_epoch.append(train_loss)
train_accs_epoch.append(train_acc)
train_aucs_epoch.append(train_auc)
# evaluation
print('Validation:')
model.eval()
running_loss_epoch = 0.0
running_corrects_epoch = 0
total_samples = 0
y_trues_epoch = []
y_scores_epoch = []
timer.start()
for batch, (inputs, labels) in enumerate(val_loader):
inputs = inputs.to(device)
labels = labels.to(device)
with torch.no_grad():
logit = model(inputs)
loss = criterion(logit.squeeze(-1), labels)
pred_probs = logit.detach().squeeze(-1).sigmoid().cpu().numpy()
running_loss_epoch += loss.item() * inputs.size(0)
running_corrects_epoch += sum((pred_probs >= 0.5) == labels.cpu().numpy())
total_samples += inputs.size(0)
y_trues_epoch.extend(labels.cpu().numpy())
y_scores_epoch.extend(pred_probs)
# report loss, accuracy, and AUC every 100 iterations
if batch % 100 == 99:
print('{} iters evaluated | time: {:.2f}'.format(batch+1, timer.stop()))
timer.start()
timer.stop()
# report epoch loss, accuracy, and AUC
val_loss = running_loss_epoch / total_samples
val_acc = running_corrects_epoch / total_samples
val_auc = roc_auc_score(y_trues_epoch, y_scores_epoch)
print('Val: Loss {:.4f} | Acc {:.4f} | AUC {:.4f}'.format(val_loss, val_acc, val_auc))
val_losses_epoch.append(val_loss)
val_accs_epoch.append(val_acc)
val_aucs_epoch.append(val_auc)
if val_auc > best_auc:
best_auc = val_auc
best_epoch = epoch
print('')
out_dir = args.model_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
torch.save(model.state_dict(), out_dir+'/epoch{}.pth'.format(epoch))
print('Best epoch: {} | Best AUC: {:.4f}'.format(best_epoch, best_auc))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--log_file", type=str, default="train_r3d_18")
parser.add_argument("--path", type=str, default="data/train/*/*")
parser.add_argument("--load_model", type=str, default='')
parser.add_argument("--gpu", type=int, default=0, help="select gpu to use")
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--chunk_size", type=int, default=10)
parser.add_argument("--learning_rate", type=float, default=0.001)
parser.add_argument("--pos_weight", type=float, default=1.)
parser.add_argument("--num_epochs", type=int, default=10)
parser.add_argument("--model_dir", type=str, default="weights/r3d_18_0")
args = parser.parse_args()
logfile = 'logs/' + args.log_file
if os.path.exists(logfile):
os.system('rm {}'.format(logfile))
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(message)s', datefmt='%Y-%m-%d %I:%M:%S')
logger = logging.getLogger('root')
logger.addHandler(logging.FileHandler(logfile, 'a'))
try:
main(args, logger)
except Exception as e:
logger.error(e)
logger.error(traceback.format_exc)