-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsave_features_r3d_18.py
178 lines (144 loc) · 5.91 KB
/
save_features_r3d_18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# +
import torch
from torch import nn
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import transforms, models
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np
import os
import logging
import math
import random
import pickle
import argparse
import traceback
from torchsummary import summary
from dataset import PEDataset
from utils import Timer
# -
def main(args, logger):
print = logger.info
print(args)
with open('data/data_splits.pkl', 'rb') as f:
data_splits = pickle.load(f)
train_paths = data_splits['train_paths']
val_paths = data_splits['val_paths']
test_paths = data_splits['test_paths']
print("train, val, test split: train {}, val {}, test{}"\
.format(len(train_paths), len(val_paths), len(test_paths)))
transform_train = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
])
transform_val = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((192, 192)),
])
# https://github.com/deep-learning-with-pytorch/dlwpt-code/blob/master/p2ch12/training.py
# line 105 - 115
transform_3d_train = {
'crop': 192,
'rotate': 15,
}
train_set = PEDataset(paths=train_paths, mode='train', chunk_size=args.chunk_size,
transform=transform_train, transform_3d=transform_3d_train)
val_set = PEDataset(paths=val_paths, mode='val', chunk_size=args.chunk_size,
transform=transform_val)
print("train exams: {} | val exams: {}".format(train_set.get_num_exams(), val_set.get_num_exams()))
print("train chunks: {} | val chunks: {}".format(len(train_set), len(val_set)))
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False)
val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False)
print("train loader iters: {} | val loader iters: {}".format(len(train_loader), len(val_loader)))
if args.load_model == '':
model = models.video.r3d_18(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 1)
else:
model = models.video.r3d_18(pretrained=False)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, 1)
model.load_state_dict(torch.load("weights/"+args.load_model))
feature_extractor = torch.nn.Sequential(*(list(model.children())[:-1]))
print('')
print("Use cuda " + str(args.gpu))
print('')
device = torch.device("cuda:"+str(args.gpu) if torch.cuda.is_available() else "cpu")
torch.cuda.empty_cache()
feature_extractor.to(device)
print("Feature Extractor:")
print(summary(feature_extractor, input_size=(3, 10, 192, 192), batch_size=args.batch_size, device=device, logger=logger))
print('')
train_size = len(train_set)
val_size = len(val_set)
timer = Timer()
feature_extractor.eval()
train_features = np.zeros((train_size, 512))
train_labels = np.zeros((train_size, ))
timer.start()
for batch, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
with torch.no_grad():
feature = feature_extractor(inputs)
feature = feature.view(inputs.size(0), -1)
start= batch * args.batch_size
end = start + inputs.size(0)
train_features[start:end] = feature.cpu().numpy()
train_labels[start:end] = labels.numpy()
# report loss, accuracy, and AUC every 100 iterations
if batch % 100 == 99:
print('{} iters | time: {:.2f}'.format(batch+1, timer.stop()))
timer.start()
timer.stop()
print('')
out_dir = args.feature_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
np.save(out_dir+'/train_features', train_features)
np.save(out_dir+'/train_labels', train_labels)
val_features = np.zeros((val_size, 512))
val_labels = np.zeros((val_size, ))
timer.start()
for batch, (inputs, labels) in enumerate(val_loader):
inputs = inputs.to(device)
with torch.no_grad():
feature = feature_extractor(inputs)
feature = feature.view(inputs.size(0), -1)
start= batch * args.batch_size
end = start + inputs.size(0)
val_features[start:end] = feature.cpu().numpy()
val_labels[start:end] = labels.numpy()
# report loss, accuracy, and AUC every 100 iterations
if batch % 100 == 99:
print('{} iters | time: {:.2f}'.format(batch+1, timer.stop()))
timer.start()
timer.stop()
print('')
out_dir = args.feature_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
np.save(out_dir+'/val_features', val_features)
np.save(out_dir+'/val_labels', val_labels)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--log_file", type=str, default="save_features_r3d_18")
parser.add_argument("--path", type=str, default="data/train/*/*")
parser.add_argument("--load_model", type=str, default="r3d_18")
parser.add_argument("--gpu", type=int, default=0, help="select gpu to use")
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--chunk_size", type=int, default=10)
parser.add_argument("--feature_dir", type=str, default="features/r3d_18")
args = parser.parse_args()
logfile = 'logs/' + args.log_file
if os.path.exists(logfile):
os.system('rm {}'.format(logfile))
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(message)s', datefmt='%Y-%m-%d %I:%M:%S')
logger = logging.getLogger('root')
logger.addHandler(logging.FileHandler(logfile, 'a'))
try:
main(args, logger)
except Exception as e:
logger.error(e)
logger.error(traceback.format_exc)