forked from deepmodeling/deepmd-kit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitting.py
355 lines (329 loc) · 13.1 KB
/
fitting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# SPDX-License-Identifier: LGPL-3.0-or-later
import copy
from typing import (
Any,
List,
Optional,
)
import numpy as np
from .common import (
DEFAULT_PRECISION,
NativeOP,
)
from .network import (
FittingNet,
NetworkCollection,
)
from .output_def import (
FittingOutputDef,
OutputVariableDef,
fitting_check_output,
)
@fitting_check_output
class InvarFitting(NativeOP):
r"""Fitting the energy (or a porperty of `dim_out`) of the system. The force and the virial can also be trained.
Lets take the energy fitting task as an example.
The potential energy :math:`E` is a fitting network function of the descriptor :math:`\mathcal{D}`:
.. math::
E(\mathcal{D}) = \mathcal{L}^{(n)} \circ \mathcal{L}^{(n-1)}
\circ \cdots \circ \mathcal{L}^{(1)} \circ \mathcal{L}^{(0)}
The first :math:`n` hidden layers :math:`\mathcal{L}^{(0)}, \cdots, \mathcal{L}^{(n-1)}` are given by
.. math::
\mathbf{y}=\mathcal{L}(\mathbf{x};\mathbf{w},\mathbf{b})=
\boldsymbol{\phi}(\mathbf{x}^T\mathbf{w}+\mathbf{b})
where :math:`\mathbf{x} \in \mathbb{R}^{N_1}` is the input vector and :math:`\mathbf{y} \in \mathbb{R}^{N_2}`
is the output vector. :math:`\mathbf{w} \in \mathbb{R}^{N_1 \times N_2}` and
:math:`\mathbf{b} \in \mathbb{R}^{N_2}` are weights and biases, respectively,
both of which are trainable if `trainable[i]` is `True`. :math:`\boldsymbol{\phi}`
is the activation function.
The output layer :math:`\mathcal{L}^{(n)}` is given by
.. math::
\mathbf{y}=\mathcal{L}^{(n)}(\mathbf{x};\mathbf{w},\mathbf{b})=
\mathbf{x}^T\mathbf{w}+\mathbf{b}
where :math:`\mathbf{x} \in \mathbb{R}^{N_{n-1}}` is the input vector and :math:`\mathbf{y} \in \mathbb{R}`
is the output scalar. :math:`\mathbf{w} \in \mathbb{R}^{N_{n-1}}` and
:math:`\mathbf{b} \in \mathbb{R}` are weights and bias, respectively,
both of which are trainable if `trainable[n]` is `True`.
Parameters
----------
var_name
The name of the output variable.
ntypes
The number of atom types.
dim_descrpt
The dimension of the input descriptor.
dim_out
The dimension of the output fit property.
neuron
Number of neurons :math:`N` in each hidden layer of the fitting net
resnet_dt
Time-step `dt` in the resnet construction:
:math:`y = x + dt * \phi (Wx + b)`
numb_fparam
Number of frame parameter
numb_aparam
Number of atomic parameter
rcond
The condition number for the regression of atomic energy.
tot_ener_zero
Force the total energy to zero. Useful for the charge fitting.
trainable
If the weights of fitting net are trainable.
Suppose that we have :math:`N_l` hidden layers in the fitting net,
this list is of length :math:`N_l + 1`, specifying if the hidden layers and the output layer are trainable.
atom_ener
Specifying atomic energy contribution in vacuum. The `set_davg_zero` key in the descrptor should be set.
activation_function
The activation function :math:`\boldsymbol{\phi}` in the embedding net. Supported options are |ACTIVATION_FN|
precision
The precision of the embedding net parameters. Supported options are |PRECISION|
layer_name : list[Optional[str]], optional
The name of the each layer. If two layers, either in the same fitting or different fittings,
have the same name, they will share the same neural network parameters.
use_aparam_as_mask: bool, optional
If True, the atomic parameters will be used as a mask that determines the atom is real/virtual.
And the aparam will not be used as the atomic parameters for embedding.
distinguish_types
Different atomic types uses different fitting net.
"""
def __init__(
self,
var_name: str,
ntypes: int,
dim_descrpt: int,
dim_out: int,
neuron: List[int] = [120, 120, 120],
resnet_dt: bool = True,
numb_fparam: int = 0,
numb_aparam: int = 0,
rcond: Optional[float] = None,
tot_ener_zero: bool = False,
trainable: Optional[List[bool]] = None,
atom_ener: Optional[List[float]] = None,
activation_function: str = "tanh",
precision: str = DEFAULT_PRECISION,
layer_name: Optional[List[Optional[str]]] = None,
use_aparam_as_mask: bool = False,
spin: Any = None,
distinguish_types: bool = False,
):
# seed, uniform_seed are not included
if tot_ener_zero:
raise NotImplementedError("tot_ener_zero is not implemented")
if spin is not None:
raise NotImplementedError("spin is not implemented")
if use_aparam_as_mask:
raise NotImplementedError("use_aparam_as_mask is not implemented")
if use_aparam_as_mask:
raise NotImplementedError("use_aparam_as_mask is not implemented")
if layer_name is not None:
raise NotImplementedError("layer_name is not implemented")
if atom_ener is not None:
raise NotImplementedError("atom_ener is not implemented")
self.var_name = var_name
self.ntypes = ntypes
self.dim_descrpt = dim_descrpt
self.dim_out = dim_out
self.neuron = neuron
self.resnet_dt = resnet_dt
self.numb_fparam = numb_fparam
self.numb_aparam = numb_aparam
self.rcond = rcond
self.tot_ener_zero = tot_ener_zero
self.trainable = trainable
self.atom_ener = atom_ener
self.activation_function = activation_function
self.precision = precision
self.layer_name = layer_name
self.use_aparam_as_mask = use_aparam_as_mask
self.spin = spin
self.distinguish_types = distinguish_types
if self.spin is not None:
raise NotImplementedError("spin is not supported")
# init constants
self.bias_atom_e = np.zeros([self.ntypes, self.dim_out])
if self.numb_fparam > 0:
self.fparam_avg = np.zeros(self.numb_fparam)
self.fparam_inv_std = np.ones(self.numb_fparam)
else:
self.fparam_avg, self.fparam_inv_std = None, None
if self.numb_aparam > 0:
self.aparam_avg = np.zeros(self.numb_aparam)
self.aparam_inv_std = np.ones(self.numb_aparam)
else:
self.aparam_avg, self.aparam_inv_std = None, None
# init networks
in_dim = self.dim_descrpt + self.numb_fparam + self.numb_aparam
out_dim = self.dim_out
self.nets = NetworkCollection(
1 if self.distinguish_types else 0,
self.ntypes,
network_type="fitting_network",
networks=[
FittingNet(
in_dim,
out_dim,
self.neuron,
self.activation_function,
self.resnet_dt,
self.precision,
bias_out=True,
)
for ii in range(self.ntypes if self.distinguish_types else 1)
],
)
def output_def(self):
return FittingOutputDef(
[
OutputVariableDef(
self.var_name, [self.dim_out], reduciable=True, differentiable=True
),
]
)
def __setitem__(self, key, value):
if key in ["bias_atom_e"]:
self.bias_atom_e = value
elif key in ["fparam_avg"]:
self.fparam_avg = value
elif key in ["fparam_inv_std"]:
self.fparam_inv_std = value
elif key in ["aparam_avg"]:
self.aparam_avg = value
elif key in ["aparam_inv_std"]:
self.aparam_inv_std = value
else:
raise KeyError(key)
def __getitem__(self, key):
if key in ["bias_atom_e"]:
return self.bias_atom_e
elif key in ["fparam_avg"]:
return self.fparam_avg
elif key in ["fparam_inv_std"]:
return self.fparam_inv_std
elif key in ["aparam_avg"]:
return self.aparam_avg
elif key in ["aparam_inv_std"]:
return self.aparam_inv_std
else:
raise KeyError(key)
def serialize(self) -> dict:
"""Serialize the fitting to dict."""
return {
"var_name": self.var_name,
"ntypes": self.ntypes,
"dim_descrpt": self.dim_descrpt,
"dim_out": self.dim_out,
"neuron": self.neuron,
"resnet_dt": self.resnet_dt,
"numb_fparam": self.numb_fparam,
"numb_aparam": self.numb_aparam,
"rcond": self.rcond,
"activation_function": self.activation_function,
"precision": self.precision,
"distinguish_types": self.distinguish_types,
"nets": self.nets.serialize(),
"@variables": {
"bias_atom_e": self.bias_atom_e,
"fparam_avg": self.fparam_avg,
"fparam_inv_std": self.fparam_inv_std,
"aparam_avg": self.aparam_avg,
"aparam_inv_std": self.aparam_inv_std,
},
# not supported
"tot_ener_zero": self.tot_ener_zero,
"trainable": self.trainable,
"atom_ener": self.atom_ener,
"layer_name": self.layer_name,
"use_aparam_as_mask": self.use_aparam_as_mask,
"spin": self.spin,
}
@classmethod
def deserialize(cls, data: dict) -> "InvarFitting":
data = copy.deepcopy(data)
variables = data.pop("@variables")
nets = data.pop("nets")
obj = cls(**data)
for kk in variables.keys():
obj[kk] = variables[kk]
obj.nets = NetworkCollection.deserialize(nets)
return obj
def call(
self,
descriptor: np.array,
atype: np.array,
gr: Optional[np.array] = None,
g2: Optional[np.array] = None,
h2: Optional[np.array] = None,
fparam: Optional[np.array] = None,
aparam: Optional[np.array] = None,
):
"""Calculate the fitting.
Parameters
----------
descriptor
input descriptor. shape: nf x nloc x nd
atype
the atom type. shape: nf x nloc
gr
The rotationally equivariant and permutationally invariant single particle
representation. shape: nf x nloc x ng x 3
g2
The rotationally invariant pair-partical representation.
shape: nf x nloc x nnei x ng
h2
The rotationally equivariant pair-partical representation.
shape: nf x nloc x nnei x 3
fparam
The frame parameter. shape: nf x nfp. nfp being `numb_fparam`
aparam
The atomic parameter. shape: nf x nloc x nap. nap being `numb_aparam`
"""
nf, nloc, nd = descriptor.shape
# check input dim
if nd != self.dim_descrpt:
raise ValueError(
"get an input descriptor of dim {nd},"
"which is not consistent with {self.dim_descrpt}."
)
xx = descriptor
# check fparam dim, concate to input descriptor
if self.numb_fparam > 0:
assert fparam is not None, "fparam should not be None"
if fparam.shape[-1] != self.numb_fparam:
raise ValueError(
"get an input fparam of dim {fparam.shape[-1]}, ",
"which is not consistent with {self.numb_fparam}.",
)
fparam = (fparam - self.fparam_avg) * self.fparam_inv_std
fparam = np.tile(fparam.reshape([nf, 1, -1]), [1, nloc, 1])
xx = np.concatenate(
[xx, fparam],
axis=-1,
)
# check aparam dim, concate to input descriptor
if self.numb_aparam > 0:
assert aparam is not None, "aparam should not be None"
if aparam.shape[-1] != self.numb_aparam:
raise ValueError(
"get an input aparam of dim {aparam.shape[-1]}, ",
"which is not consistent with {self.numb_aparam}.",
)
aparam = (aparam - self.aparam_avg) * self.aparam_inv_std
xx = np.concatenate(
[xx, aparam],
axis=-1,
)
# calcualte the prediction
if self.distinguish_types:
outs = np.zeros([nf, nloc, self.dim_out])
for type_i in range(self.ntypes):
mask = np.tile(
(atype == type_i).reshape([nf, nloc, 1]), [1, 1, self.dim_out]
)
atom_energy = self.nets[(type_i,)](xx)
atom_energy = atom_energy + self.bias_atom_e[type_i]
atom_energy = atom_energy * mask
outs = outs + atom_energy # Shape is [nframes, natoms[0], 1]
else:
outs = self.nets[()](xx) + self.bias_atom_e[atype]
return {self.var_name: outs}