@@ -50,17 +50,7 @@ def train(self):
50
50
iteration = 0
51
51
52
52
while cutoff < max_cutoff :
53
- try :
54
- fvs , labels = self ._remove_outliers (fvs , labels , cutoff )
55
- except : # Failure - usually when there are no instances left (removes all)
56
- if self .verbose :
57
- print ('\n ORL Iteration:' , iteration , '- factor:' , factor ,
58
- '- cutoff:' , cutoff , '- FAILURE\n ' )
59
-
60
- factor += 1
61
- cutoff = base_cutoff * factor
62
- fvs , labels = deepcopy (orig_fvs ), deepcopy (orig_labels )
63
- iteration += 1
53
+ fvs , labels = self ._remove_outliers (fvs , labels , cutoff )
64
54
65
55
self .w = np .full (fvs .shape [1 ], 0.0 )
66
56
for i , fv in enumerate (fvs ):
@@ -107,7 +97,7 @@ def _remove_outliers(self, fvs, labels, cutoff):
107
97
while old_number_of_instances != len (labels ):
108
98
# Assume at least 50% are non-poisonous instances
109
99
if iteration > 0 and old_number_of_instances < 0.5 * original_num_instances :
110
- raise ValueError ()
100
+ break
111
101
112
102
if self .verbose :
113
103
print ('Iteration:' , iteration , '- num_instances:' , len (labels ))
0 commit comments