|
| 1 | +# Copyright 2024 Bytedance Ltd. and/or its affiliates |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +# you may not use this file except in compliance with the License. |
| 5 | +# You may obtain a copy of the License at |
| 6 | +# |
| 7 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +# |
| 9 | +# Unless required by applicable law or agreed to in writing, software |
| 10 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +# See the License for the specific language governing permissions and |
| 13 | +# limitations under the License. |
| 14 | + |
| 15 | +import asyncio |
| 16 | +from typing import Any, Dict |
| 17 | + |
| 18 | +import ray |
| 19 | +from omegaconf import OmegaConf |
| 20 | +from openai.types.chat.chat_completion import ChatCompletion |
| 21 | + |
| 22 | +from verl.workers.rollout.chat_scheduler import ChatCompletionScheduler |
| 23 | +from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role |
| 24 | +from verl.workers.fsdp_async_workers import AsyncActorRolloutRefWorker, AsyncLLMManager |
| 25 | +from verl.single_controller.ray import RayWorkerGroup, RayClassWithInitArgs |
| 26 | +from verl.single_controller.ray.base import Worker, create_colocated_worker_cls |
| 27 | + |
| 28 | + |
| 29 | +async def test_vllm_multi_turn(): |
| 30 | + config = OmegaConf.load("verl/trainer/config/ppo_trainer.yaml") |
| 31 | + model_path = "Qwen/Qwen2-7B-Instruct" |
| 32 | + model_name = "/".join(model_path.split("/")[-2:]) |
| 33 | + config.actor_rollout_ref.model.path = model_path |
| 34 | + config.actor_rollout_ref.rollout.mode = "async" |
| 35 | + config.actor_rollout_ref.rollout.prompt_length = 4096 |
| 36 | + config.actor_rollout_ref.rollout.response_length = 4096 |
| 37 | + |
| 38 | + # =========================== 1. Create hybrid ActorRollout workers =========================== |
| 39 | + ray.init( |
| 40 | + runtime_env={ |
| 41 | + 'env_vars': { |
| 42 | + 'TOKENIZERS_PARALLELISM': 'true', |
| 43 | + 'NCCL_DEBUG': 'WARN', |
| 44 | + 'VLLM_LOGGING_LEVEL': 'WARN', |
| 45 | + 'VLLM_USE_V1': '1', |
| 46 | + } |
| 47 | + }) |
| 48 | + role_worker_mapping = { |
| 49 | + Role.ActorRollout: ray.remote(AsyncActorRolloutRefWorker), |
| 50 | + } |
| 51 | + global_pool_id = 'global_pool' |
| 52 | + resource_pool_spec = { |
| 53 | + global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes, |
| 54 | + } |
| 55 | + mapping = { |
| 56 | + Role.ActorRollout: global_pool_id, |
| 57 | + } |
| 58 | + resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping) |
| 59 | + resource_pool_manager.create_resource_pool() |
| 60 | + resource_pool_to_cls = {pool: {} for pool in resource_pool_manager.resource_pool_dict.values()} |
| 61 | + |
| 62 | + # create actor and rollout |
| 63 | + resource_pool = resource_pool_manager.get_resource_pool(Role.ActorRollout) |
| 64 | + actor_rollout_cls = RayClassWithInitArgs(cls=role_worker_mapping[Role.ActorRollout], |
| 65 | + config=config.actor_rollout_ref, |
| 66 | + role='actor_rollout') |
| 67 | + resource_pool_to_cls[resource_pool]['actor_rollout'] = actor_rollout_cls |
| 68 | + |
| 69 | + all_wg = {} |
| 70 | + wg_dicts = [] |
| 71 | + for resource_pool, class_dict in resource_pool_to_cls.items(): |
| 72 | + worker_dict_cls = create_colocated_worker_cls(class_dict=class_dict, worker_cls=Worker) |
| 73 | + wg_dict = RayWorkerGroup(resource_pool=resource_pool, ray_cls_with_init=worker_dict_cls) |
| 74 | + spawn_wg = wg_dict.spawn(prefix_set=class_dict.keys()) |
| 75 | + all_wg.update(spawn_wg) |
| 76 | + wg_dicts.append(wg_dict) |
| 77 | + actor_rollout_wg = all_wg['actor_rollout'] |
| 78 | + actor_rollout_wg.init_model() |
| 79 | + |
| 80 | + # =========================== 2. Create AsyncLLMManager&ChatScheduler =========================== |
| 81 | + async_rollout_manager = AsyncLLMManager( |
| 82 | + config=config.actor_rollout_ref, |
| 83 | + worker_group=actor_rollout_wg, |
| 84 | + ) |
| 85 | + |
| 86 | + async_chat_scheduler = ChatCompletionScheduler( |
| 87 | + config=config.actor_rollout_ref.rollout, |
| 88 | + model_path=config.actor_rollout_ref.model.path, |
| 89 | + server_addresses=async_rollout_manager.server_addresses, |
| 90 | + ) |
| 91 | + |
| 92 | + # =========================== 3. Multi turn rollout =========================== |
| 93 | + async def callback(completions: ChatCompletion, info: Dict[str, Any]): |
| 94 | + messages, round = info["messages"], info["round"] |
| 95 | + message = completions.choices[0].message |
| 96 | + messages.append({"role": message.role, "content": message.content}) |
| 97 | + print(f"[round={round}] role: {message.role}, content: {message.content}") |
| 98 | + |
| 99 | + extra_headers = {"x-request-id": completions.id} |
| 100 | + if round == 0: |
| 101 | + messages.append({"role": "user", "content": "What is your name?"}) |
| 102 | + await async_chat_scheduler.submit_chat_completions( |
| 103 | + callback=callback, |
| 104 | + callback_additional_info={ |
| 105 | + "messages": messages, |
| 106 | + "round": 1 |
| 107 | + }, |
| 108 | + model=model_name, |
| 109 | + messages=messages, |
| 110 | + extra_headers=extra_headers, |
| 111 | + ) |
| 112 | + elif round == 1: |
| 113 | + messages.append({"role": "user", "content": "What is your favorite color?"}) |
| 114 | + await async_chat_scheduler.submit_chat_completions( |
| 115 | + callback=callback, |
| 116 | + callback_additional_info={ |
| 117 | + "messages": messages, |
| 118 | + "round": 2 |
| 119 | + }, |
| 120 | + model=model_name, |
| 121 | + messages=messages, |
| 122 | + extra_headers=extra_headers, |
| 123 | + ) |
| 124 | + else: |
| 125 | + print("Done!") |
| 126 | + |
| 127 | + messages = [{ |
| 128 | + "role": "user", |
| 129 | + "content": "Let's play a role playing game. Your name is Bob, your favorite color is red." |
| 130 | + }] |
| 131 | + await async_chat_scheduler.submit_chat_completions( |
| 132 | + callback=callback, |
| 133 | + callback_additional_info={ |
| 134 | + "messages": messages, |
| 135 | + "round": 0 |
| 136 | + }, |
| 137 | + model=model_name, |
| 138 | + messages=messages, |
| 139 | + ) |
| 140 | + assert len(messages) == 6 |
| 141 | + for round, message in enumerate(messages): |
| 142 | + if round % 2 == 0: |
| 143 | + assert message["role"] == "user" |
| 144 | + else: |
| 145 | + assert message["role"] == "assistant" |
| 146 | + |
| 147 | + |
| 148 | +if __name__ == "__main__": |
| 149 | + asyncio.run(test_vllm_multi_turn()) |
0 commit comments