-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
executable file
·111 lines (83 loc) · 3.75 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
"""
Some code used from from https://github.com/Newmu/dcgan_code
"""
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from utils import *
try:
image_summary = tf.image_summary
scalar_summary = tf.scalar_summary
histogram_summary = tf.histogram_summary
merge_summary = tf.merge_summary
SummaryWriter = tf.train.SummaryWriter
except:
image_summary = tf.summary.image
scalar_summary = tf.summary.scalar
histogram_summary = tf.summary.histogram
merge_summary = tf.summary.merge
SummaryWriter = tf.summary.FileWriter
if "concat_v2" in dir(tf):
def concat(tensors, axis, *args, **kwargs):
return tf.concat_v2(tensors, axis, *args, **kwargs)
else:
def concat(tensors, axis, *args, **kwargs):
return tf.concat(tensors, axis, *args, **kwargs)
class batch_norm(object):
def __init__(self, epsilon=1e-6, decay = 0.9, name="batch_norm",train=True):
with tf.variable_scope(name):
self.epsilon = epsilon
self.decay = decay
self.name = name
self.train = train
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(x,
decay=self.decay,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=self.train,
scope=self.name)
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
x_shapes = x.get_shape()
y_shapes = y.get_shape()
return concat([
x, y*tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])], 3)
def conv2d(input_, output_dim, k_h=5, k_w=5, d_h=1, d_w=1, stddev=0.02, name="conv2d", padding = "VALID"):
'''
: params k_h : kernel_height
: params k_w : kernel_width
: params d_h : stride_height
: params d_w : stride_width
'''
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],initializer=tf.contrib.layers.xavier_initializer())
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding=padding)
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def deconv2d(input_, output_shape, k_h=5, k_w=5, d_h=1, d_w=1, stddev=0.02, name="deconv2d", with_w=False,padding='VALID'):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_w, output_shape[-1], input_.get_shape()[-1]],initializer=tf.contrib.layers.xavier_initializer())
if padding=='VALID':
# input_ = tf.pad(input_,paddings = [[0,0], [4,4], [4,4], [0,0]], mode='SYMMETRIC', name = "pad")
deconv = tf.nn.conv2d_transpose(input_, w, output_shape = output_shape, strides=[1, d_h, d_w, 1], padding = 'VALID')
else:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape = output_shape, strides=[1, d_h, d_w, 1], padding = 'SAME')
biases = tf.get_variable('biases', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
return deconv
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak*x)
def linear(input_, output_size, scope=None, stddev=0.02, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,tf.contrib.layers.xavier_initializer())
bias = tf.get_variable("bias", [output_size],initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias