-
-
Notifications
You must be signed in to change notification settings - Fork 599
/
Copy pathtoken.rs
572 lines (495 loc) · 20.2 KB
/
token.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
// Sonic
//
// Fast, lightweight and schema-less search backend
// Copyright: 2019, Valerian Saliou <[email protected]>
// License: Mozilla Public License v2.0 (MPL v2.0)
use hashbrown::HashSet;
use std::time::Instant;
use unicode_segmentation::{UnicodeSegmentation, UnicodeWords};
use whatlang::{
detect as lang_detect_all, detect_lang as lang_detect, detect_script as script_detect, Lang,
};
use super::stopwords::LexerStopWord;
use crate::query::types::QueryGenericLang;
use crate::store::identifiers::{StoreTermHash, StoreTermHashed};
pub struct TokenLexerBuilder;
pub struct TokenLexer<'a> {
mode: TokenLexerMode,
locale: Option<Lang>,
words: UnicodeWords<'a>,
yields: HashSet<StoreTermHashed>,
}
#[derive(PartialEq)]
pub enum TokenLexerMode {
NormalizeAndCleanup(Option<Lang>),
NormalizeOnly,
}
const TEXT_LANG_TRUNCATE_OVER_CHARS: usize = 200;
const TEXT_LANG_DETECT_PROCEED_OVER_CHARS: usize = 20;
const TEXT_LANG_DETECT_NGRAM_UNDER_CHARS: usize = 60;
impl TokenLexerBuilder {
pub fn from(mode: TokenLexerMode, text: &str) -> Result<TokenLexer, ()> {
let locale = match mode {
TokenLexerMode::NormalizeAndCleanup(None) => {
// Detect text language (current lexer mode asks for a cleanup)
debug!("detecting locale from lexer text: {}", text);
Self::detect_lang(text)
}
TokenLexerMode::NormalizeAndCleanup(Some(lang)) => {
// Use hinted language (current lexer mode asks for a cleanup)
debug!("using hinted locale: {} from lexer text: {}", lang, text);
Some(lang)
}
TokenLexerMode::NormalizeOnly => {
debug!("not detecting locale from lexer text: {}", text);
// May be 'NormalizeOnly' mode; no need to perform a locale detection
None
}
};
// Build final token builder iterator
Ok(TokenLexer::new(mode, text, locale))
}
fn detect_lang(text: &str) -> Option<Lang> {
// Detect only if text is long-enough to allow the text locale detection system to \
// function properly
if text.len() < TEXT_LANG_DETECT_PROCEED_OVER_CHARS {
return None;
}
// Truncate text if necessary, as to avoid the ngram or stopwords detector to be \
// ran on more words than those that are enough to reliably detect a locale.
let safe_text = if text.len() > TEXT_LANG_TRUNCATE_OVER_CHARS {
debug!(
"lexer text needs to be truncated, as it is too long ({}/{}): {}",
text.len(),
TEXT_LANG_TRUNCATE_OVER_CHARS,
text
);
// Perform an UTF-8 aware truncation
// Notice: then 'len()' check above was not UTF-8 aware, but is better than \
// nothing as it avoids entering the below iterator for small strings.
// Notice: we fallback on text if the result is 'None'; as if it is 'None' there \
// was less characters than the truncate limit in the UTF-8 parsed text. With \
// this unwrap-way, we avoid doing a 'text.chars().count()' everytime, which is \
// a O(N) operation, and rather guard this block with a 'text.len()' which is \
// a O(1) operation but which is not 100% reliable when approaching the truncate \
// limit. This is a trade-off, which saves quite a lot CPU cycles at scale.
text.char_indices()
.nth(TEXT_LANG_TRUNCATE_OVER_CHARS)
.map(|(end_index, _)| &text[0..end_index])
.unwrap_or(text)
} else {
text
};
debug!("will detect locale for lexer safe text: {}", safe_text);
// Attempt to detect the locale from text using an hybrid method that maximizes both \
// accuracy and performance.
// Notice: as the 'ngram' method is almost 10x slower than the 'stopwords' method, we \
// prefer using the 'stopwords' method on long texts where we can be sure to see quite \
// a lot of stopwords which will produce a reliable result. However, for shorter texts \
// there are not enough north none stopwords, thus we use the slower 'ngram' method as \
// an attempt to extract the locale using trigrams. Still, if either of these methods \
// fails at detecting a locale it will try using the other method in fallback as to \
// produce the most reliable result while minimizing CPU cycles.
if safe_text.len() < TEXT_LANG_DETECT_NGRAM_UNDER_CHARS {
debug!(
"lexer text is shorter than {} characters, using the slow method",
TEXT_LANG_DETECT_NGRAM_UNDER_CHARS
);
Self::detect_lang_slow(safe_text)
} else {
debug!(
"lexer text is equal or longer than {} characters, using the fast method",
TEXT_LANG_DETECT_NGRAM_UNDER_CHARS
);
Self::detect_lang_fast(safe_text)
}
}
fn detect_lang_slow(safe_text: &str) -> Option<Lang> {
let ngram_start = Instant::now();
match lang_detect_all(safe_text) {
Some(detector) => {
let ngram_took = ngram_start.elapsed();
let mut locale = detector.lang();
info!(
"[slow lexer] locale detected from text: {} ({} from {} at {}/1; {}s + {}ms)",
safe_text,
locale,
detector.script(),
detector.confidence(),
ngram_took.as_secs(),
ngram_took.subsec_millis()
);
// Confidence is low, try to detect locale from stop-words.
// Notice: this is a fallback but should not be too reliable for short \
// texts.
if !detector.is_reliable() {
debug!("[slow lexer] trying to detect locale from stopwords instead");
// Better alternate locale found?
if let Some(alternate_locale) =
LexerStopWord::guess_lang(safe_text, detector.script())
{
info!(
"[slow lexer] detected more accurate locale from stopwords: {}",
alternate_locale
);
locale = alternate_locale;
}
}
Some(locale)
}
None => {
info!(
"[slow lexer] no locale could be detected from text: {}",
safe_text
);
None
}
}
}
fn detect_lang_fast(safe_text: &str) -> Option<Lang> {
let stopwords_start = Instant::now();
match script_detect(safe_text) {
Some(script) => {
// Locale found?
if let Some(locale) = LexerStopWord::guess_lang(safe_text, script) {
let stopwords_took = stopwords_start.elapsed();
info!(
"[fast lexer] locale detected from text: {} ({}; {}s + {}ms)",
safe_text,
locale,
stopwords_took.as_secs(),
stopwords_took.subsec_millis()
);
Some(locale)
} else {
debug!("[fast lexer] trying to detect locale from fallback ngram instead");
// No locale found, fallback on slow ngram.
lang_detect(safe_text)
}
}
None => {
info!(
"[fast lexer] no script could be detected from text: {}",
safe_text
);
None
}
}
}
}
impl<'a> TokenLexer<'a> {
fn new(mode: TokenLexerMode, text: &'a str, locale: Option<Lang>) -> TokenLexer<'a> {
TokenLexer {
mode,
locale,
words: text.unicode_words(),
yields: HashSet::new(),
}
}
}
impl TokenLexerMode {
pub fn from_query_lang(lang: Option<QueryGenericLang>) -> TokenLexerMode {
match lang {
Some(QueryGenericLang::Enabled(lang)) => {
// Cleanup with provided language
TokenLexerMode::NormalizeAndCleanup(Some(lang))
}
Some(QueryGenericLang::Disabled) => {
// Normalize only (language purposefully set to 'none')
TokenLexerMode::NormalizeOnly
}
None => {
// Auto-detect language and cleanup (this is the default behavior)
TokenLexerMode::NormalizeAndCleanup(None)
}
}
}
}
impl<'a> Iterator for TokenLexer<'a> {
type Item = (String, StoreTermHashed);
// Guarantees provided by the lexer on the output: \
// - Text is split per-word in a script-aware way \
// - Words are normalized (ie. lower-case) \
// - Gibberish words are removed (ie. words that may just be junk) \
// - Stop-words are removed
fn next(&mut self) -> Option<Self::Item> {
while let Some(word) = self.words.next() {
// Lower-case word
// Notice: unfortunately, as Rust is unicode-aware, we need to convert the str slice \
// to a heap-indexed String; as lower-cased characters may change in bit size.
let word = word.to_lowercase();
// Check if normalized word is a stop-word? (if should normalize and cleanup)
if self.mode == TokenLexerMode::NormalizeOnly || !LexerStopWord::is(&word, self.locale)
{
// Hash the term (this is used by all iterator consumers, as well as internally \
// in the iterator to keep track of already-yielded words in a space-optimized \
// manner, ie. by using 32-bit unsigned integer hashes)
let term_hash = StoreTermHash::from(&word);
// Check if word was not already yielded? (we return unique words)
if !self.yields.contains(&term_hash) {
debug!("lexer yielded word: {}", word);
self.yields.insert(term_hash);
return Some((word, term_hash));
} else {
debug!(
"lexer did not yield word: {} because: word already yielded",
word
);
}
} else {
debug!(
"lexer did not yield word: {} because: word is a stop-word",
word
);
}
}
None
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_cleans_token_english() {
let mut token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"The quick brown fox jumps over the lazy dog!",
)
.unwrap();
assert_eq!(token_cleaner.locale, Some(Lang::Eng));
assert_eq!(
token_cleaner.next(),
Some(("quick".to_string(), 4179131656))
);
assert_eq!(
token_cleaner.next(),
Some(("brown".to_string(), 1268820067))
);
assert_eq!(token_cleaner.next(), Some(("fox".to_string(), 667256324)));
assert_eq!(token_cleaner.next(), Some(("jumps".to_string(), 633865164)));
assert_eq!(token_cleaner.next(), Some(("lazy".to_string(), 4130433347)));
assert_eq!(token_cleaner.next(), Some(("dog".to_string(), 2044924251)));
assert_eq!(token_cleaner.next(), None);
}
#[test]
fn it_cleans_token_french() {
let mut token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"Le vif renard brun saute par dessus le chien paresseux.",
)
.unwrap();
assert_eq!(token_cleaner.locale, Some(Lang::Fra));
assert_eq!(
token_cleaner.next(),
Some(("renard".to_string(), 1635186311))
);
assert_eq!(token_cleaner.next(), Some(("brun".to_string(), 2763604928)));
assert_eq!(
token_cleaner.next(),
Some(("saute".to_string(), 1918158211))
);
assert_eq!(
token_cleaner.next(),
Some(("chien".to_string(), 2177818351))
);
assert_eq!(
token_cleaner.next(),
Some(("paresseux".to_string(), 1678693110))
);
assert_eq!(token_cleaner.next(), None);
}
#[test]
fn it_cleans_token_chinese() {
let mut token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"快狐跨懒狗快狐跨懒狗",
)
.unwrap();
assert_eq!(token_cleaner.locale, Some(Lang::Cmn));
assert_eq!(token_cleaner.next(), Some(("快".to_string(), 126546256)));
assert_eq!(token_cleaner.next(), Some(("狐".to_string(), 2879689662)));
assert_eq!(token_cleaner.next(), Some(("跨".to_string(), 2913342670)));
assert_eq!(token_cleaner.next(), Some(("懒".to_string(), 3199935961)));
assert_eq!(token_cleaner.next(), Some(("狗".to_string(), 3360772096)));
assert_eq!(token_cleaner.next(), None);
}
#[test]
fn it_cleans_token_emojis() {
let mut token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"🚀 🙋♂️🙋♂️🙋♂️",
)
.unwrap();
assert_eq!(token_cleaner.locale, None);
assert_eq!(token_cleaner.next(), None);
}
#[test]
fn it_cleans_token_lang_hinted() {
let mut token_cleaner_right = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(Some(Lang::Eng)),
"This will be cleaned properly, as English was hinted rightfully so.",
)
.unwrap();
let mut token_cleaner_wrong = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(Some(Lang::Fra)),
"This will not be cleaned properly, as French was hinted but this is English.",
)
.unwrap();
assert_eq!(token_cleaner_right.locale, Some(Lang::Eng));
assert_eq!(token_cleaner_wrong.locale, Some(Lang::Fra));
assert_eq!(
token_cleaner_right.next(),
Some(("cleaned".to_string(), 3550382624))
);
assert_eq!(
token_cleaner_wrong.next(),
Some(("this".to_string(), 493303710))
);
}
#[test]
fn it_detects_lang_english_regular() {
assert_eq!(
TokenLexerBuilder::detect_lang("The quick brown fox jumps over the lazy dog!"),
Some(Lang::Eng)
);
}
#[test]
fn it_detects_lang_english_long() {
assert_eq!(
TokenLexerBuilder::detect_lang(
r#"Running an electrical current through water splits it into oxygen and hydrogen,
the latter of which can be used as a reliable, zero-emission fuel source. In the past,
the process of purifying water beforehand was too energy intensive for this process to
be useful — but now scientists have figured out how to skip the process altogether and
convert seawater into usable hydrogen"#
),
Some(Lang::Eng)
);
}
#[test]
fn it_doesnt_detect_lang_english_tiny() {
assert_eq!(TokenLexerBuilder::detect_lang("The quick"), None);
}
}
#[cfg(all(feature = "benchmark", test))]
mod benches {
extern crate test;
use super::*;
use test::Bencher;
#[bench]
fn bench_normalize_token_french_build(b: &mut Bencher) {
b.iter(|| {
TokenLexerBuilder::from(
TokenLexerMode::NormalizeOnly,
"Le vif renard brun saute par dessus le chien paresseux.",
)
});
}
#[bench]
fn bench_normalize_token_french_exhaust(b: &mut Bencher) {
b.iter(|| {
let token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeOnly,
"Le vif renard brun saute par dessus le chien paresseux.",
)
.unwrap();
token_cleaner.map(|value| value.1).collect::<Vec<u32>>()
});
}
#[bench]
fn bench_clean_token_english_regular_build(b: &mut Bencher) {
b.iter(|| {
TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"The quick brown fox jumps over the lazy dog!",
)
});
}
#[bench]
fn bench_clean_token_english_regular_exhaust(b: &mut Bencher) {
b.iter(|| {
let token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"The quick brown fox jumps over the lazy dog!",
)
.unwrap();
token_cleaner.map(|value| value.1).collect::<Vec<u32>>()
});
}
#[bench]
fn bench_clean_token_english_long_exhaust(b: &mut Bencher) {
b.iter(|| {
let token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
r#"Running an electrical current through water splits it into oxygen and hydrogen,
the latter of which can be used as a reliable, zero-emission fuel source. In the
past, the process of purifying water beforehand was too energy intensive for this
process to be useful — but now scientists have figured out how to skip the process
altogether and convert seawater into usable hydrogen"#,
)
.unwrap();
token_cleaner.map(|value| value.1).collect::<Vec<u32>>()
});
}
#[bench]
fn bench_clean_token_chinese_build(b: &mut Bencher) {
b.iter(|| {
TokenLexerBuilder::from(TokenLexerMode::NormalizeAndCleanup(None), "快狐跨懒狗")
});
}
#[bench]
fn bench_clean_token_chinese_exhaust(b: &mut Bencher) {
b.iter(|| {
let token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(None),
"快狐跨懒狗",
)
.unwrap();
token_cleaner.map(|value| value.1).collect::<Vec<u32>>()
});
}
#[bench]
fn bench_clean_token_english_hinted_build(b: &mut Bencher) {
b.iter(|| {
TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(Some(Lang::Eng)),
"The quick brown fox jumps over the lazy dog!",
)
});
}
#[bench]
fn bench_clean_token_english_hinted_exhaust(b: &mut Bencher) {
b.iter(|| {
let token_cleaner = TokenLexerBuilder::from(
TokenLexerMode::NormalizeAndCleanup(Some(Lang::Eng)),
"The quick brown fox jumps over the lazy dog!",
)
.unwrap();
token_cleaner.map(|value| value.1).collect::<Vec<u32>>()
});
}
#[bench]
fn bench_detect_lang_english_short(b: &mut Bencher) {
b.iter(|| TokenLexerBuilder::detect_lang("The quick brown fox."));
}
#[bench]
fn bench_detect_lang_english_regular(b: &mut Bencher) {
b.iter(|| TokenLexerBuilder::detect_lang("The quick brown fox jumps over the lazy dog!"));
}
#[bench]
fn bench_detect_lang_english_long(b: &mut Bencher) {
b.iter(|| {
TokenLexerBuilder::detect_lang(
r#"Running an electrical current through water splits it into oxygen and hydrogen,
the latter of which can be used as a reliable, zero-emission fuel source. In the past,
the process of purifying water beforehand was too energy intensive for this process to
be useful — but now scientists have figured out how to skip the process altogether and
convert seawater into usable hydrogen"#,
)
});
}
#[bench]
fn bench_dont_detect_lang_english_tiny(b: &mut Bencher) {
b.iter(|| TokenLexerBuilder::detect_lang("The quick"));
}
}