-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmetric_counter.py
63 lines (52 loc) · 2.32 KB
/
metric_counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from tensorboardX import SummaryWriter
import logging
REPORT_EACH = 100
class MetricCounter():
def __init__(self, exp_name):
super(MetricCounter, self).__init__()
self.writer = SummaryWriter(exp_name)
logging.basicConfig(filename='{}.log'.format(exp_name), level=logging.DEBUG)
self.clear()
self.best_metric = 0
def clear(self):
self.G_loss = []
self.D_loss = []
self.content_loss = []
self.feature_loss = []
self.adv_loss = []
self.psnr = []
self.ssim = []
def add_losses(self, l_G, l_content, l_feature, l_D=0):
self.G_loss.append(l_G)
self.content_loss.append(l_content)
self.feature_loss.append(l_feature)
self.adv_loss.append(l_G - l_content)
self.D_loss.append(l_D)
def add_metrics(self, psnr, ssim):
self.psnr.append(psnr)
self.ssim.append(ssim)
def loss_message(self):
mean_loss = np.mean(self.G_loss[-REPORT_EACH:])
mean_psnr = np.mean(self.psnr[-REPORT_EACH:])
mean_ssim = np.mean(self.ssim[-REPORT_EACH:])
return '{:.3f}; psnr={}; ssim={}'.format(mean_loss, mean_psnr, mean_ssim)
def write_to_tensorboard(self, epoch_num, validation=False):
scalar_prefix = 'Validation' if validation else 'Train'
self.writer.add_scalar('{}_G_Loss'.format(scalar_prefix), np.mean(self.G_loss), epoch_num)
self.writer.add_scalar('{}_D_Loss'.format(scalar_prefix), np.mean(self.D_loss), epoch_num)
self.writer.add_scalar('{}_G_feature'.format(scalar_prefix), np.mean(self.feature_loss), epoch_num)
self.writer.add_scalar('{}_G_Loss_adv'.format(scalar_prefix), np.mean(self.adv_loss), epoch_num)
self.writer.add_scalar('{}_G_Loss_content'.format(scalar_prefix), np.mean(self.content_loss), epoch_num)
self.writer.add_scalar('{}_SSIM'.format(scalar_prefix), np.mean(self.ssim), epoch_num)
self.writer.add_scalar('{}_PSNR'.format(scalar_prefix), np.mean(self.psnr), epoch_num)
def update_best_model(self):
cur_metric = np.mean(self.psnr)
if self.best_metric < cur_metric:
self.best_metric = cur_metric
return True
return False