1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "name" : " apply.ipynb" ,
7
+ "provenance" : [],
8
+ "include_colab_link" : true
9
+ },
10
+ "kernelspec" : {
11
+ "name" : " python3" ,
12
+ "display_name" : " Python 3"
13
+ }
14
+ },
15
+ "cells" : [
16
+ {
17
+ "cell_type" : " markdown" ,
18
+ "metadata" : {
19
+ "id" : " view-in-github" ,
20
+ "colab_type" : " text"
21
+ },
22
+ "source" : [
23
+ " <a href=\" https://colab.research.google.com/github/tinhb92/relax_ml/blob/master/pandas/apply.ipynb\" target=\" _parent\" ><img src=\" https://colab.research.google.com/assets/colab-badge.svg\" alt=\" Open In Colab\" /></a>"
24
+ ]
25
+ },
26
+ {
27
+ "cell_type" : " code" ,
28
+ "metadata" : {
29
+ "id" : " AYIHr7yMISYZ" ,
30
+ "colab_type" : " code" ,
31
+ "colab" : {}
32
+ },
33
+ "source" : [
34
+ " import numpy as np\n " ,
35
+ " import pandas as pd"
36
+ ],
37
+ "execution_count" : 0 ,
38
+ "outputs" : []
39
+ },
40
+ {
41
+ "cell_type" : " code" ,
42
+ "metadata" : {
43
+ "id" : " bnE39B78HxDL" ,
44
+ "colab_type" : " code" ,
45
+ "colab" : {}
46
+ },
47
+ "source" : [
48
+ " df = pd.DataFrame([[4, 9]] * 3, columns=['A', 'B'])"
49
+ ],
50
+ "execution_count" : 0 ,
51
+ "outputs" : []
52
+ },
53
+ {
54
+ "cell_type" : " code" ,
55
+ "metadata" : {
56
+ "id" : " 96-jbKvaIM5l" ,
57
+ "colab_type" : " code" ,
58
+ "colab" : {
59
+ "base_uri" : " https://localhost:8080/" ,
60
+ "height" : 136
61
+ },
62
+ "outputId" : " 00f3c564-368a-4b0a-ccc5-2a8dadd938a6"
63
+ },
64
+ "source" : [
65
+ " df.apply(np.sqrt)"
66
+ ],
67
+ "execution_count" : 7 ,
68
+ "outputs" : [
69
+ {
70
+ "output_type" : " execute_result" ,
71
+ "data" : {
72
+ "text/html" : [
73
+ " <div>\n " ,
74
+ " <style scoped>\n " ,
75
+ " .dataframe tbody tr th:only-of-type {\n " ,
76
+ " vertical-align: middle;\n " ,
77
+ " }\n " ,
78
+ " \n " ,
79
+ " .dataframe tbody tr th {\n " ,
80
+ " vertical-align: top;\n " ,
81
+ " }\n " ,
82
+ " \n " ,
83
+ " .dataframe thead th {\n " ,
84
+ " text-align: right;\n " ,
85
+ " }\n " ,
86
+ " </style>\n " ,
87
+ " <table border=\" 1\" class=\" dataframe\" >\n " ,
88
+ " <thead>\n " ,
89
+ " <tr style=\" text-align: right;\" >\n " ,
90
+ " <th></th>\n " ,
91
+ " <th>A</th>\n " ,
92
+ " <th>B</th>\n " ,
93
+ " </tr>\n " ,
94
+ " </thead>\n " ,
95
+ " <tbody>\n " ,
96
+ " <tr>\n " ,
97
+ " <th>0</th>\n " ,
98
+ " <td>2.0</td>\n " ,
99
+ " <td>3.0</td>\n " ,
100
+ " </tr>\n " ,
101
+ " <tr>\n " ,
102
+ " <th>1</th>\n " ,
103
+ " <td>2.0</td>\n " ,
104
+ " <td>3.0</td>\n " ,
105
+ " </tr>\n " ,
106
+ " <tr>\n " ,
107
+ " <th>2</th>\n " ,
108
+ " <td>2.0</td>\n " ,
109
+ " <td>3.0</td>\n " ,
110
+ " </tr>\n " ,
111
+ " </tbody>\n " ,
112
+ " </table>\n " ,
113
+ " </div>"
114
+ ],
115
+ "text/plain" : [
116
+ " A B\n " ,
117
+ " 0 2.0 3.0\n " ,
118
+ " 1 2.0 3.0\n " ,
119
+ " 2 2.0 3.0"
120
+ ]
121
+ },
122
+ "metadata" : {
123
+ "tags" : []
124
+ },
125
+ "execution_count" : 7
126
+ }
127
+ ]
128
+ },
129
+ {
130
+ "cell_type" : " code" ,
131
+ "metadata" : {
132
+ "id" : " puajjOwmIUM5" ,
133
+ "colab_type" : " code" ,
134
+ "colab" : {
135
+ "base_uri" : " https://localhost:8080/" ,
136
+ "height" : 84
137
+ },
138
+ "outputId" : " 70abfc24-77d2-42a2-8442-d47208d84377"
139
+ },
140
+ "source" : [
141
+ " df.apply(lambda x: [1, 2], axis=1)"
142
+ ],
143
+ "execution_count" : 8 ,
144
+ "outputs" : [
145
+ {
146
+ "output_type" : " execute_result" ,
147
+ "data" : {
148
+ "text/plain" : [
149
+ " 0 [1, 2]\n " ,
150
+ " 1 [1, 2]\n " ,
151
+ " 2 [1, 2]\n " ,
152
+ " dtype: object"
153
+ ]
154
+ },
155
+ "metadata" : {
156
+ "tags" : []
157
+ },
158
+ "execution_count" : 8
159
+ }
160
+ ]
161
+ },
162
+ {
163
+ "cell_type" : " code" ,
164
+ "metadata" : {
165
+ "id" : " qfJ9kOeZIbSM" ,
166
+ "colab_type" : " code" ,
167
+ "colab" : {}
168
+ },
169
+ "source" : [
170
+ " "
171
+ ],
172
+ "execution_count" : 0 ,
173
+ "outputs" : []
174
+ }
175
+ ]
176
+ }
0 commit comments