-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcoreset-select.py
66 lines (51 loc) · 1.67 KB
/
coreset-select.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from model.SimCLR import SimCLR
from model.SimCLRv2 import SimCLRv2
from cifar import CIFAR10DataModule
import torch
from torch import set_float32_matmul_precision
from torch.utils.data import Subset, DataLoader
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, TQDMProgressBar
from pytorch_lightning.loggers import TensorBoardLogger
from json import loads
from pathlib import Path
from warnings import filterwarnings
filterwarnings("ignore")
set_float32_matmul_precision('medium')
CORESET_SELECT = True
if __name__ == '__main__':
f = open("best_params.json", 'r')
best_params = loads(f.read())
# =========================
# 1. Setup dataset
# =========================
dm = CIFAR10DataModule(data_dir="", batch_size=32,)
dm.setup()
del best_params['crop_size']
del best_params['batch_size']
# =========================
# 2. Setup model
# =========================
model = SimCLR(
**best_params,
coreset_select=CORESET_SELECT
)
# =========================
# 3. Fit trainer
# =========================
logger = TensorBoardLogger("tb_logs", name="CoresetSelect", default_hp_metric=True)
trainer = Trainer(
max_epochs=300,
logger=logger,
enable_progress_bar=True,
gpus=1,
precision='64',
limit_test_batches=0
)
trainer.fit(model, dm)
# =========================
# 4. Get coreset
# =========================
loader, cossim_avg, cossim_hist, sorted_indices = dm.get_coreset()
# save sorted dataloader, order is maintained even after saving
torch.save(loader, 'coreset_dataloader.pth')